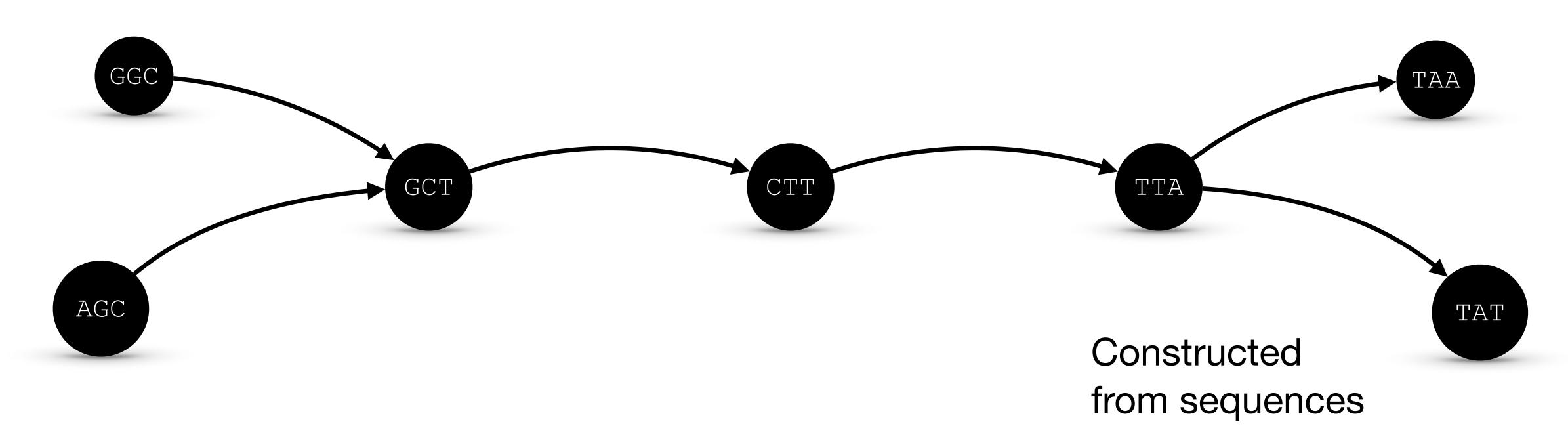


Topology-based Sparsification of Graph Annotations

Daniel Danciu*, Mikhail Karasikov*, Harun Mustafa, André Kahles, Gunnar Rätsch

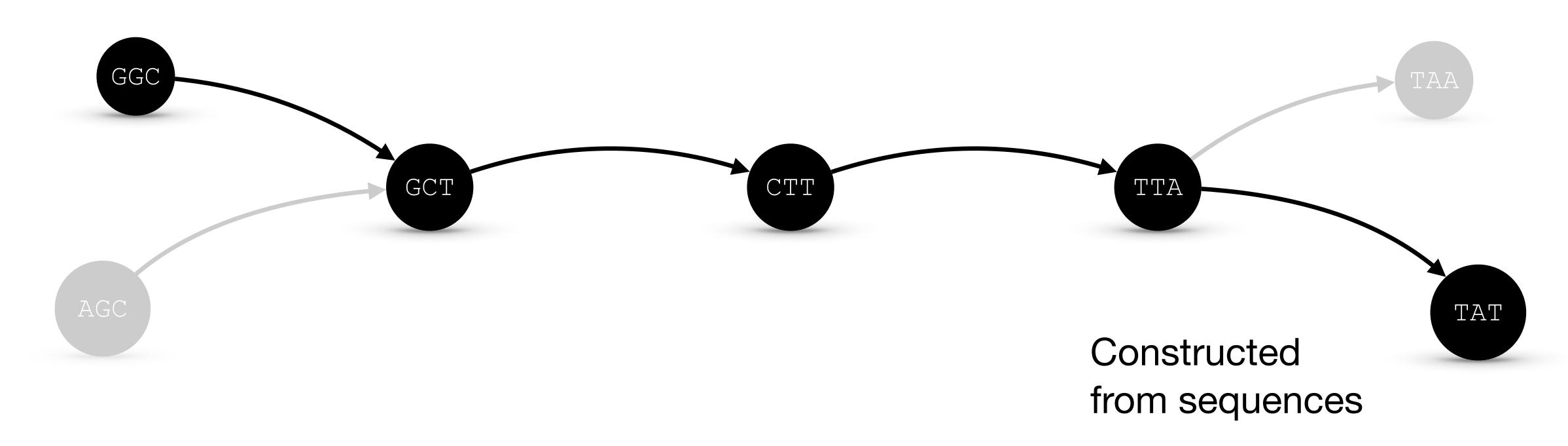
Annotated de Bruijn Graphs



L1: AGCTTAA

L2: GGCTTAT

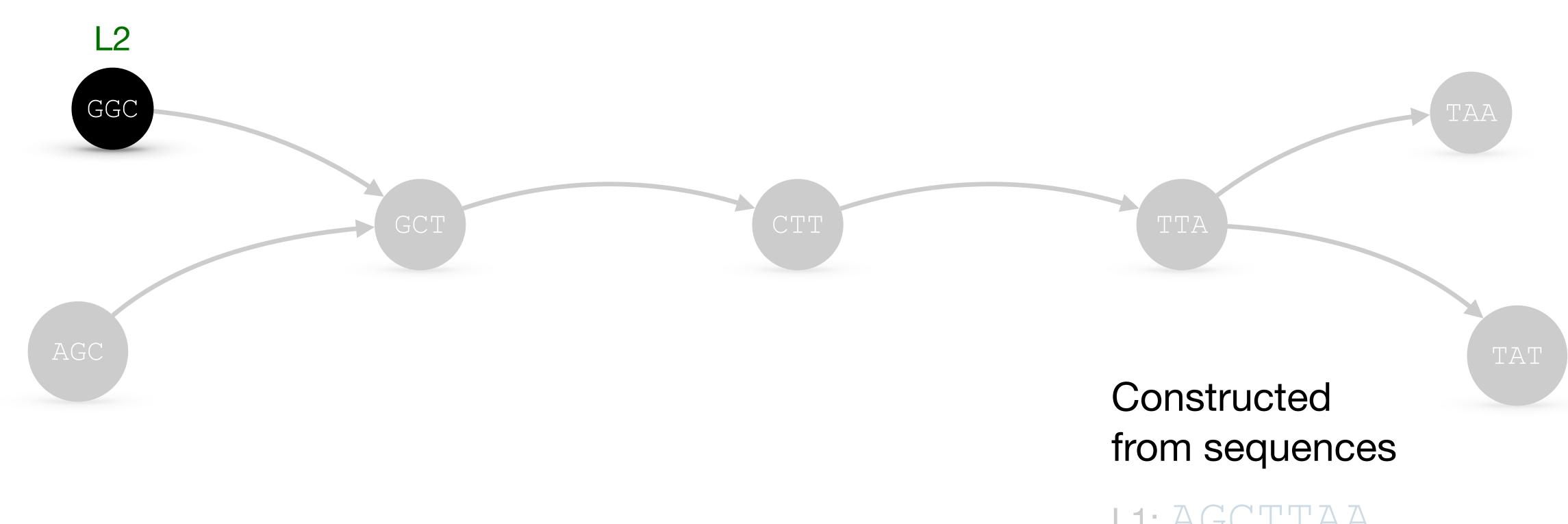
Annotated de Bruijn Graphs



L1: AGCTTAA

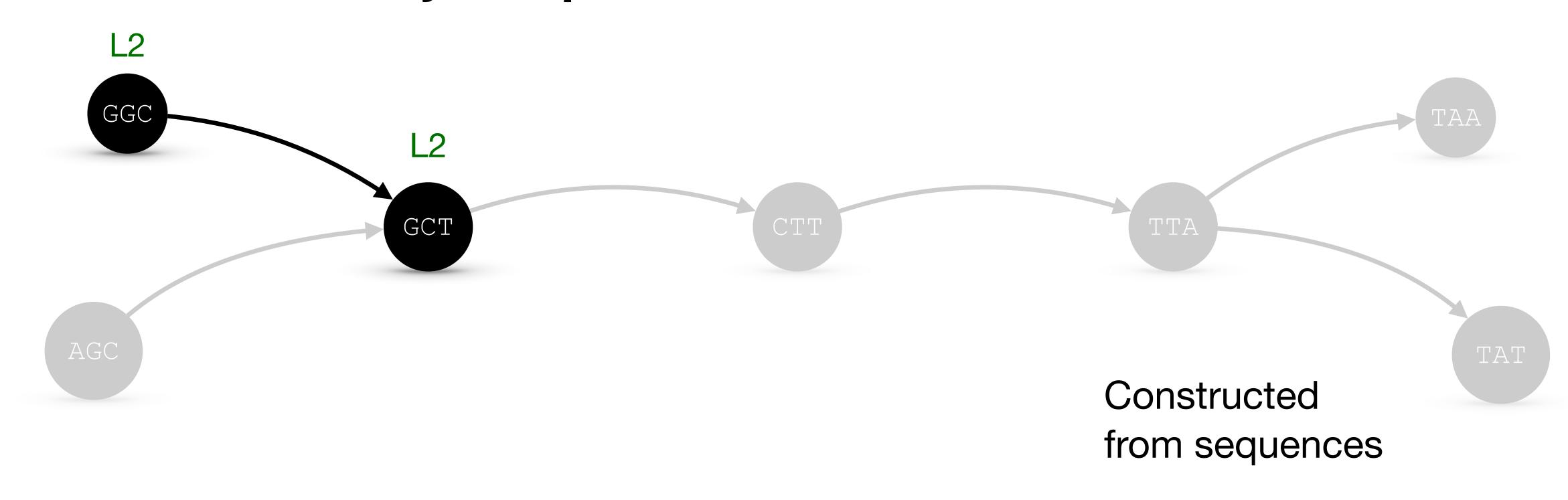
L2: GGCTTAT

Annotated de Bruijn Graphs



L2: GGCTTAT

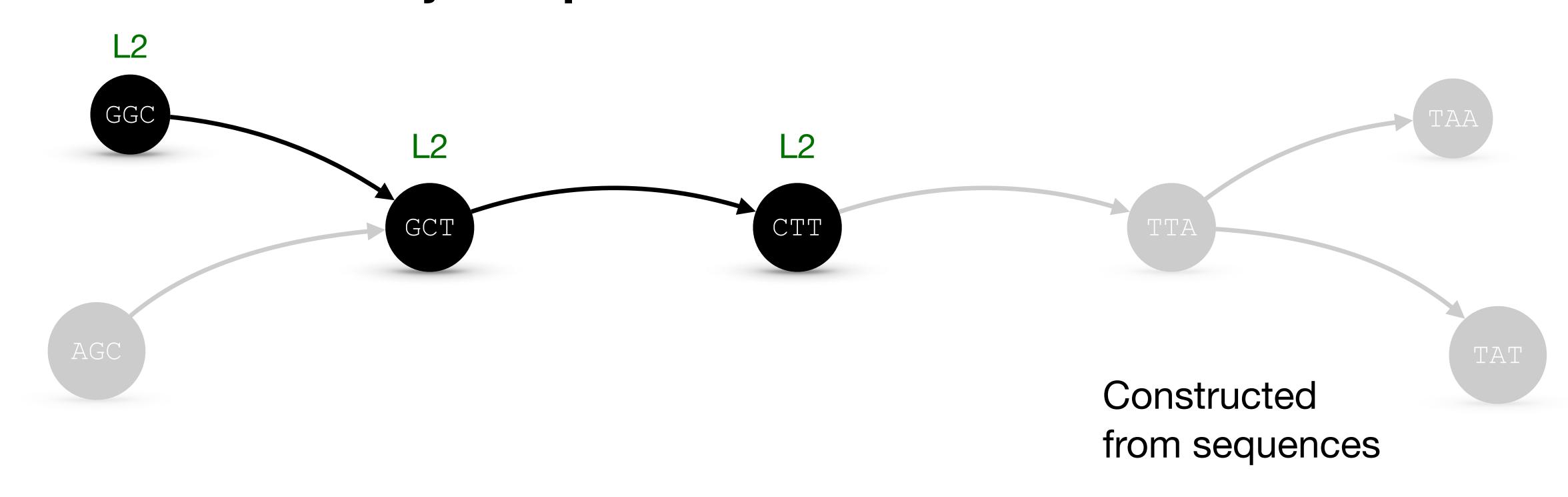
Annotated de Bruijn Graphs



L1: AGCTTAA

L2: GGCTTAT

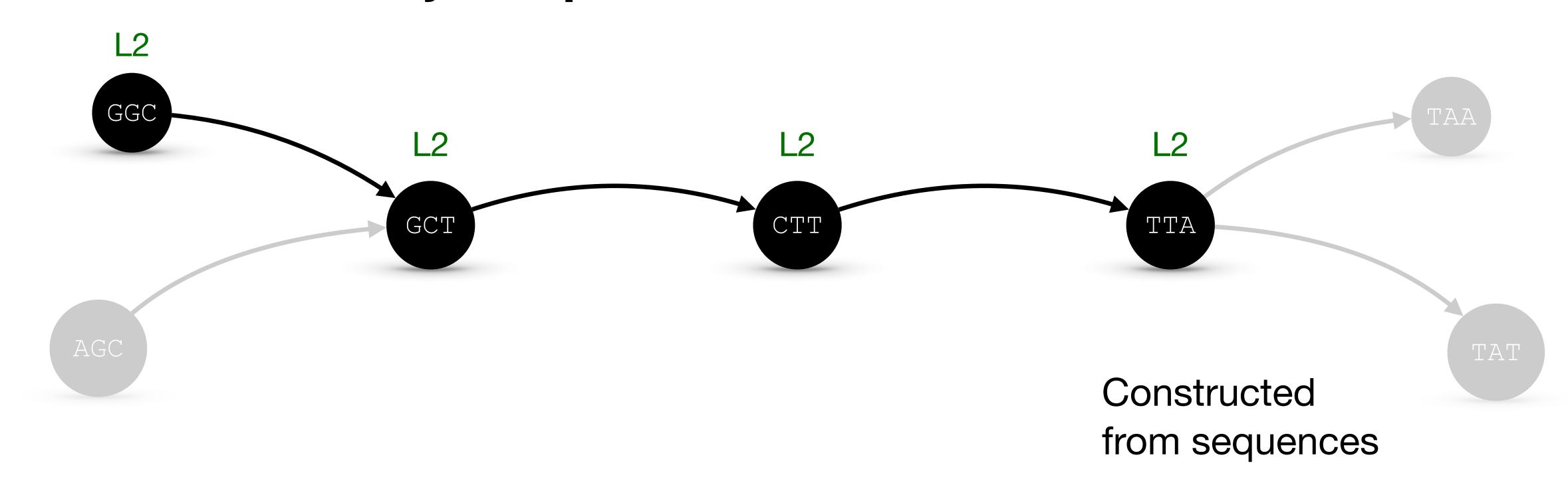
Annotated de Bruijn Graphs



L1: AGCTTAA

L2: GGCTTAT

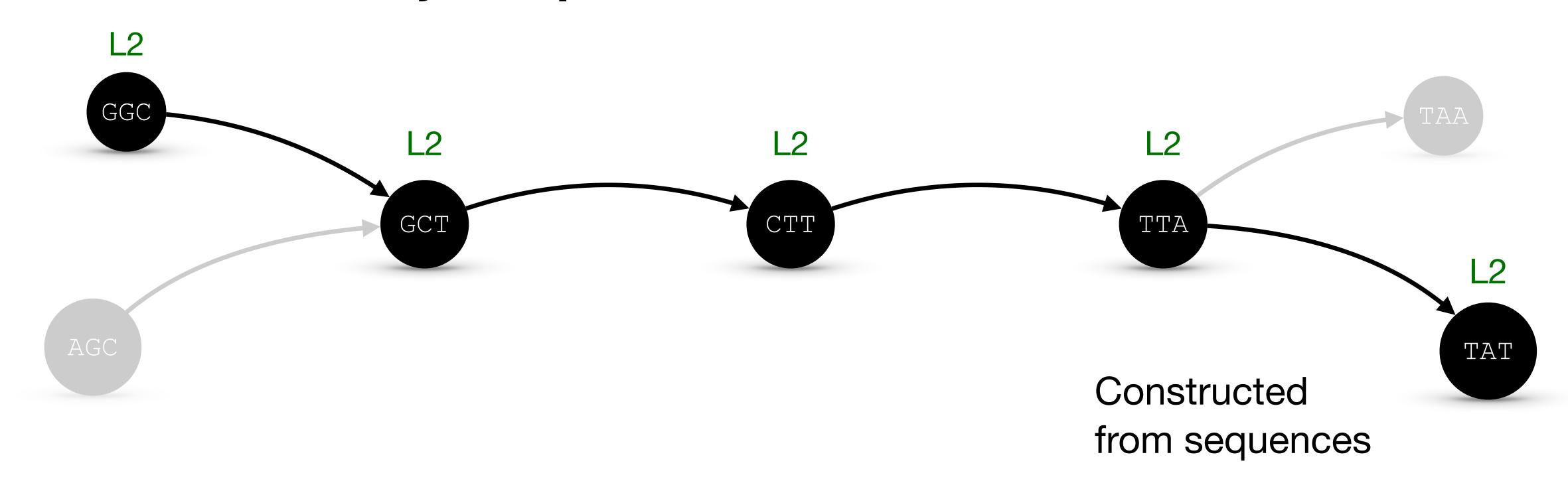
Annotated de Bruijn Graphs



L1: AGCTTAA

L2: GGCTTAT

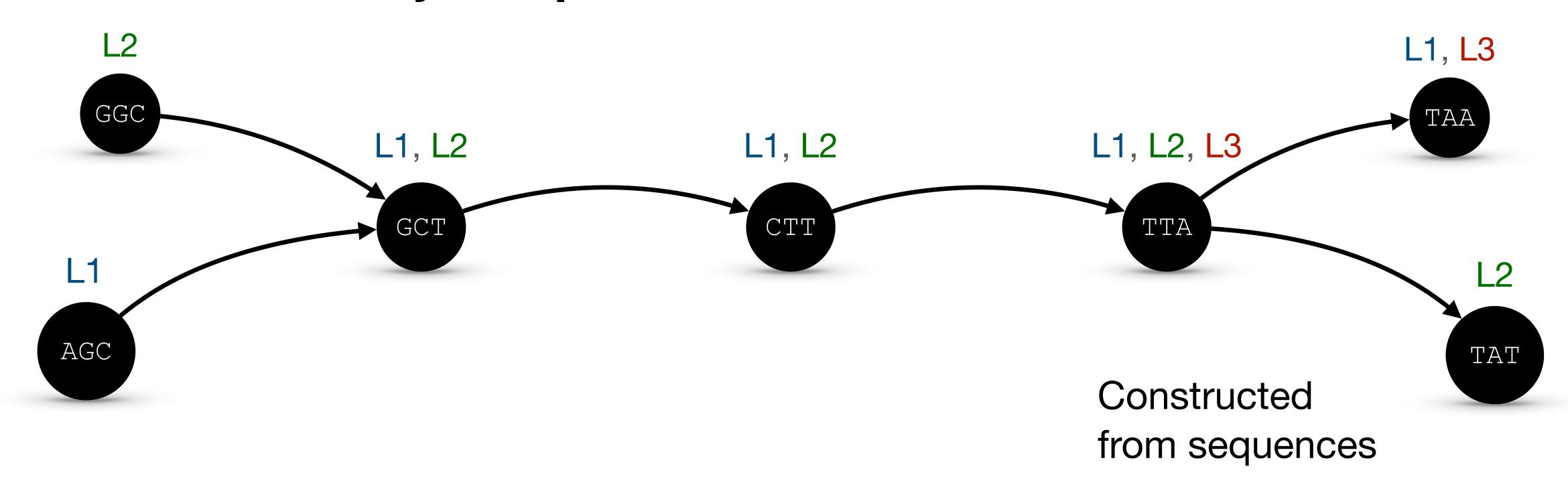
Annotated de Bruijn Graphs



L1: AGCTTAA

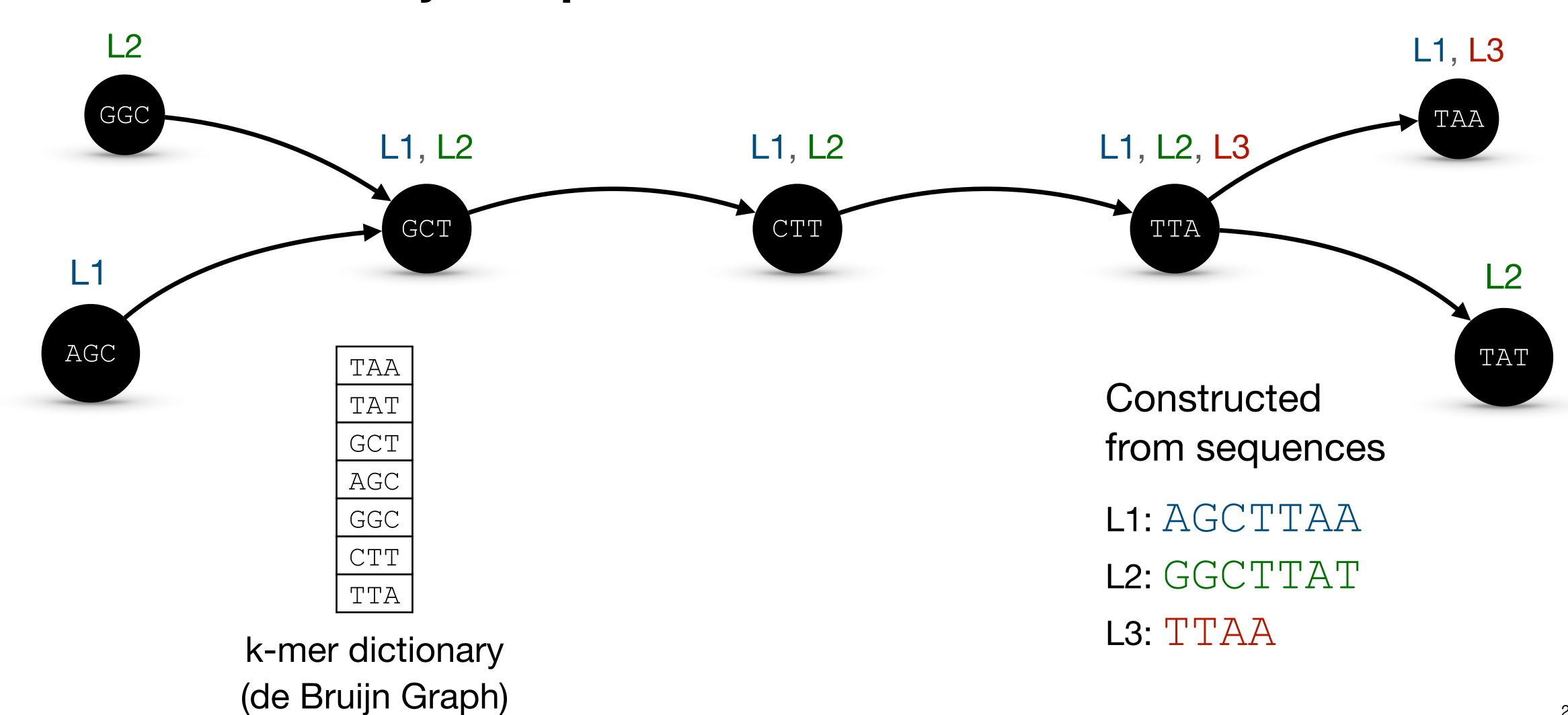
L2: GGCTTAT

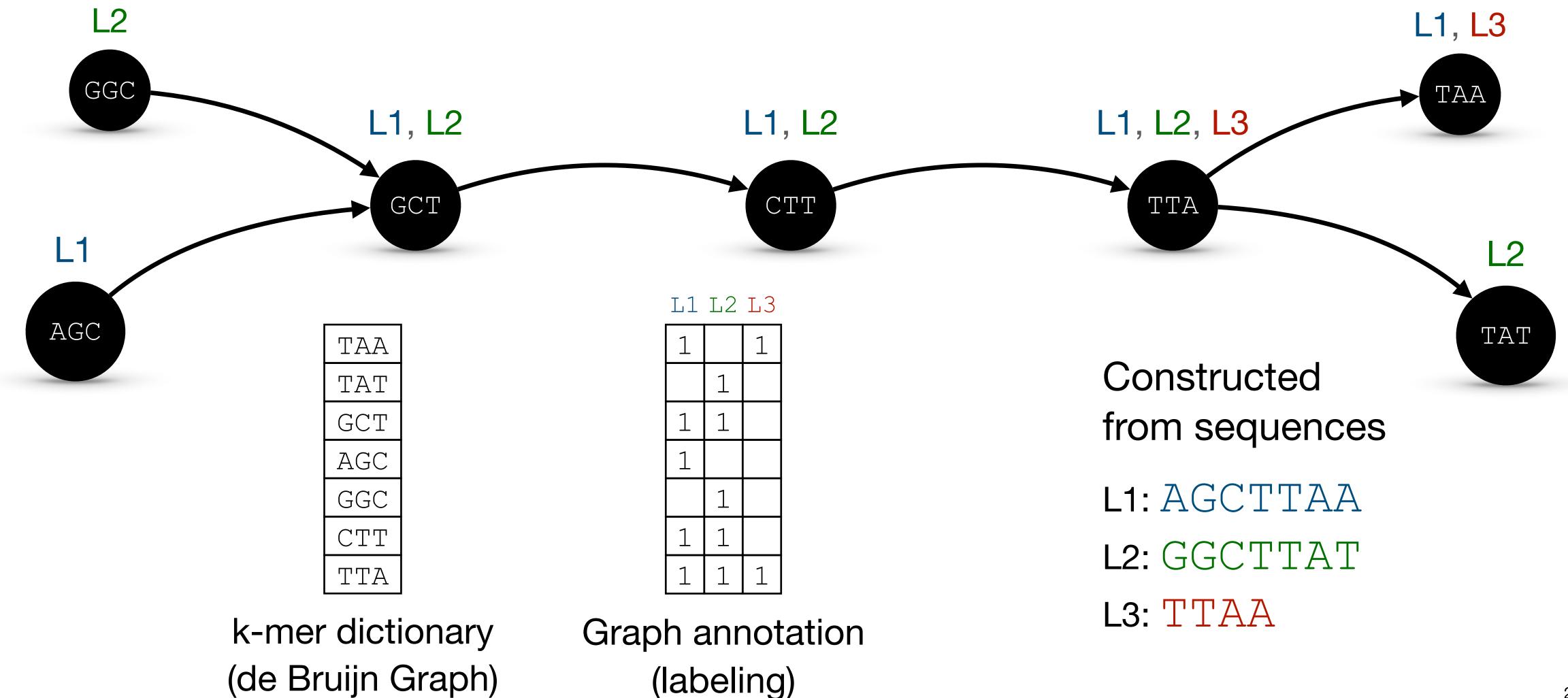
Annotated de Bruijn Graphs

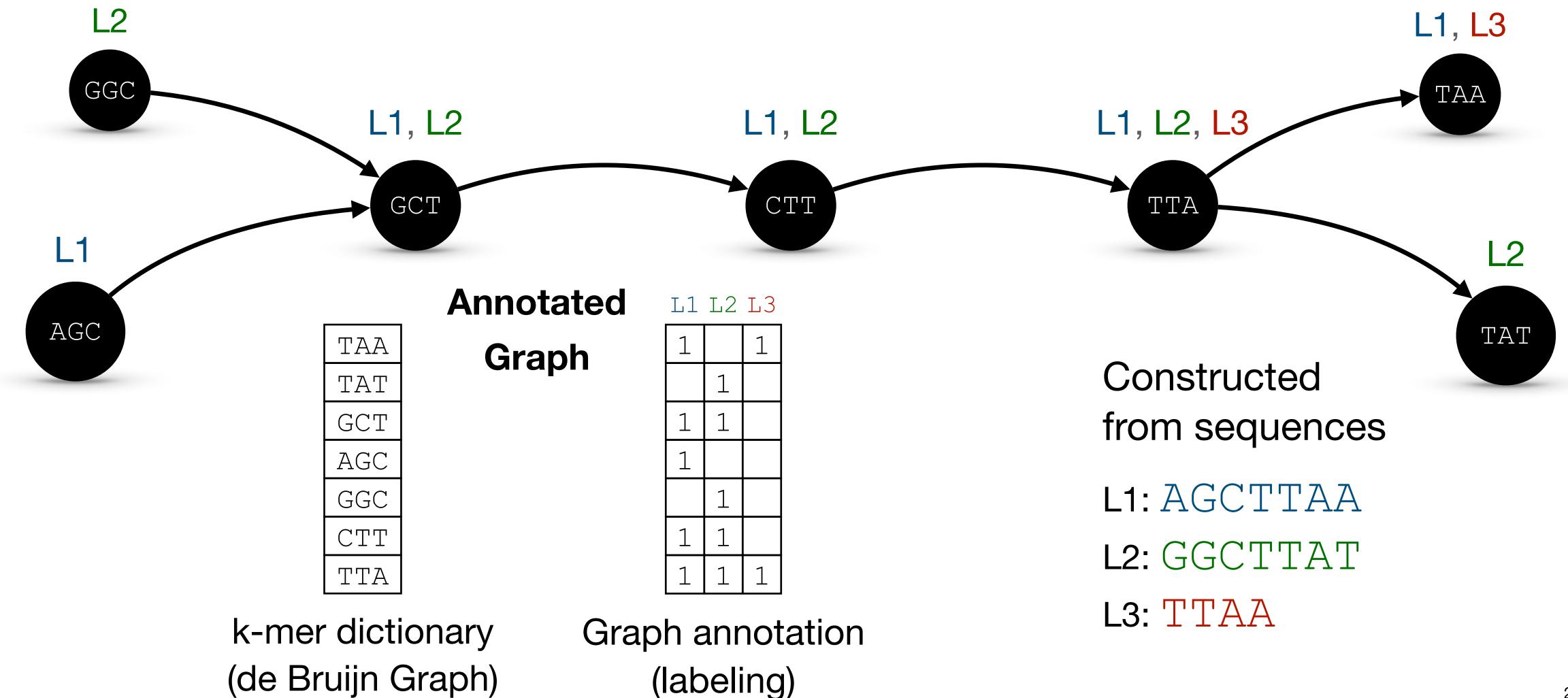


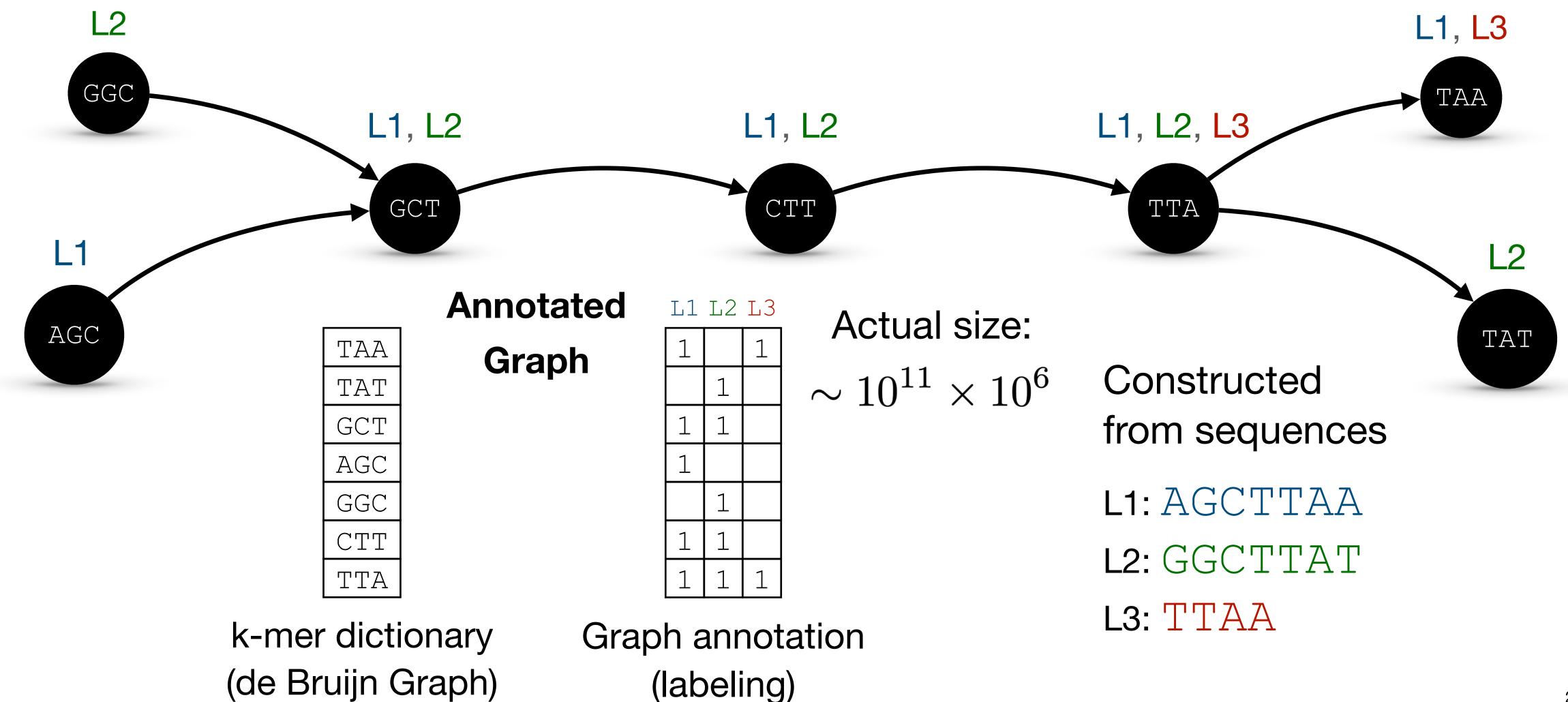
L1: AGCTTAA

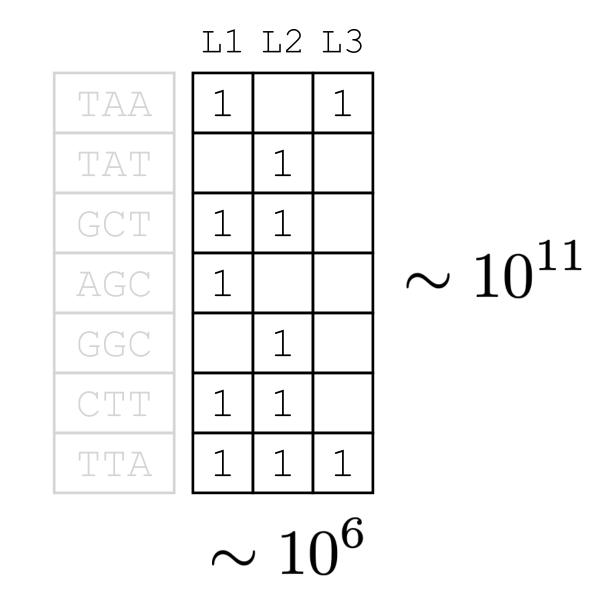
L2: GGCTTAT





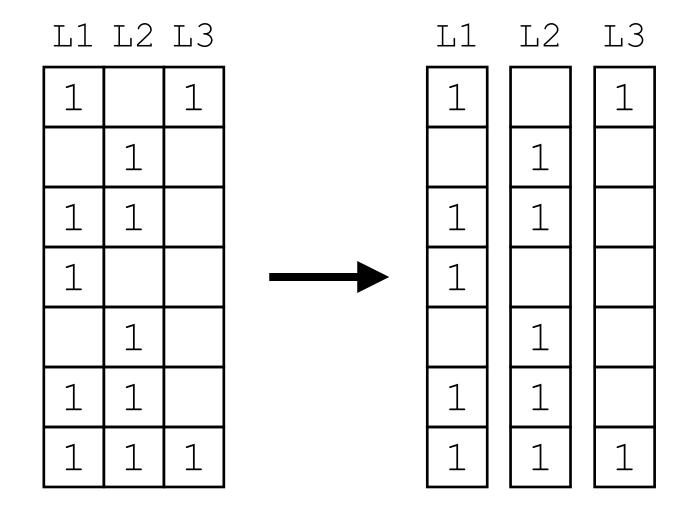


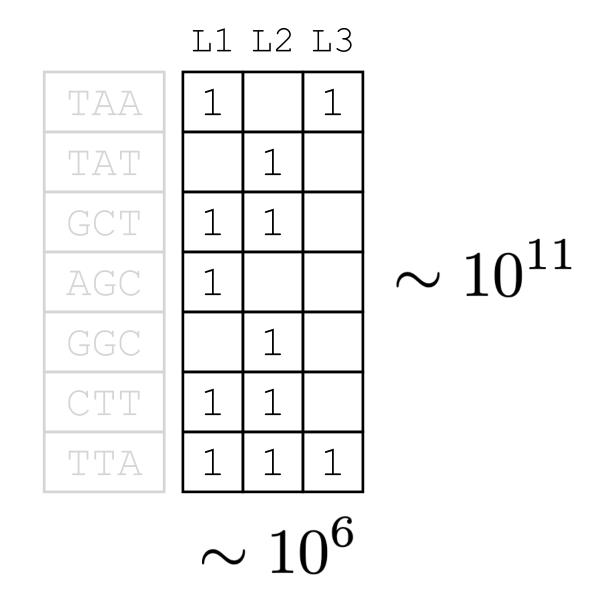




Graph Annotation Representations

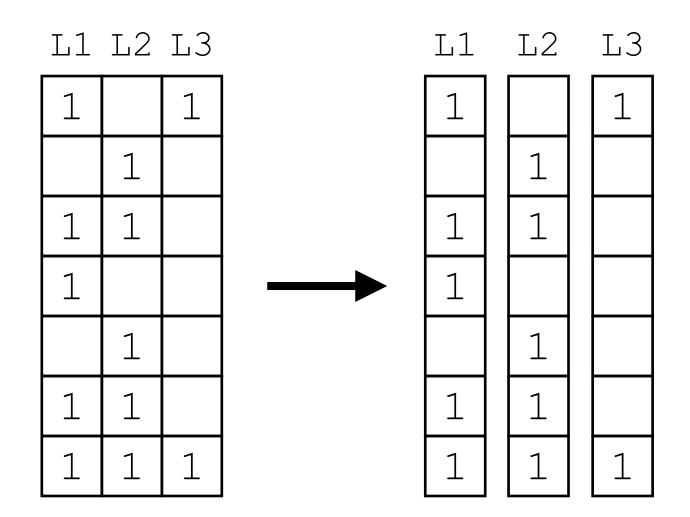
1. Column-major sparse representation

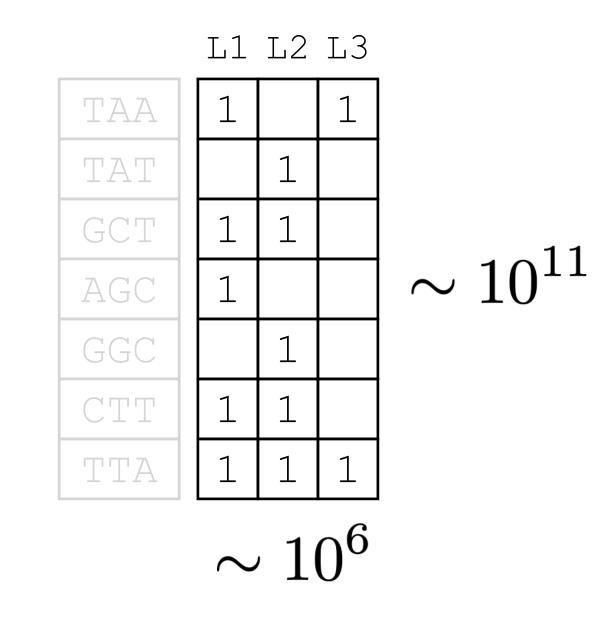




Graph Annotation Representations

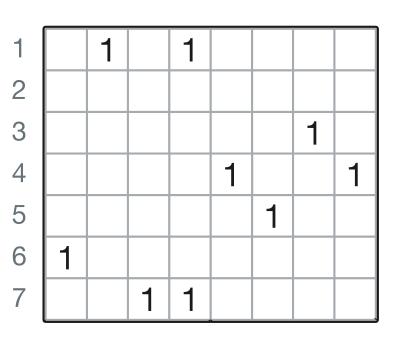
1. Column-major sparse representation



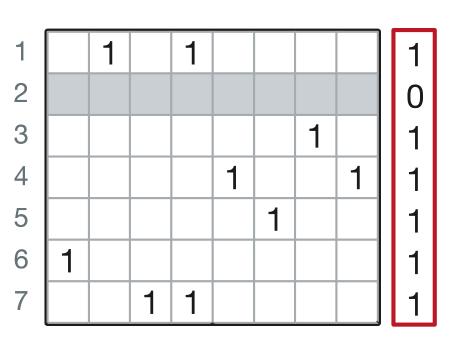


Columns are stored independently as compressed bitmaps (e.g. sd_vector [Okanohara et al., 2007])

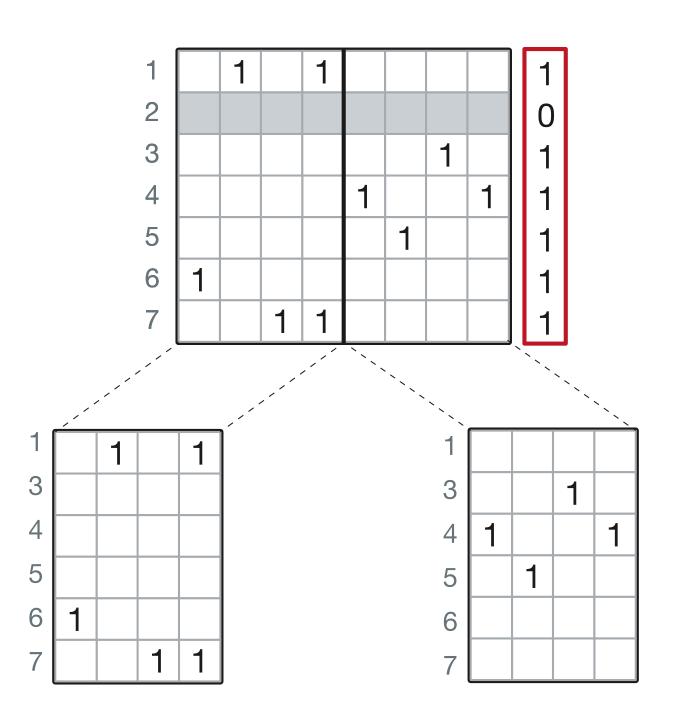
- 1. Column-major sparse representation
- 2. Multi-BRWT [Karasikov et al., 2019]



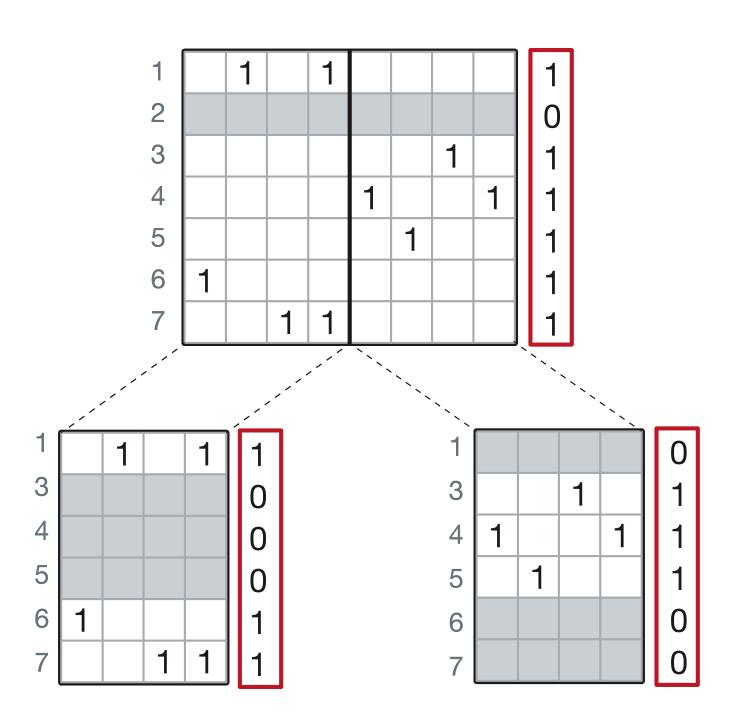
- 1. Column-major sparse representation
- 2. Multi-BRWT [Karasikov et al., 2019]



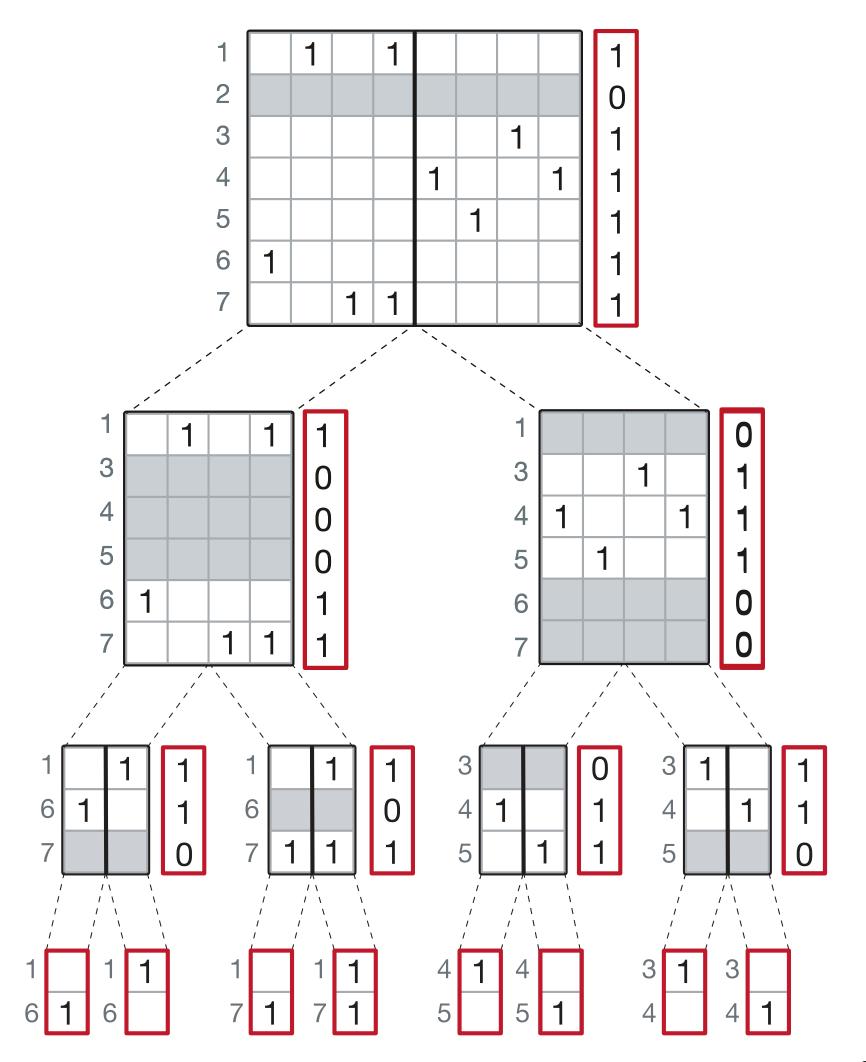
- 1. Column-major sparse representation
- 2. Multi-BRWT [Karasikov et al., 2019]



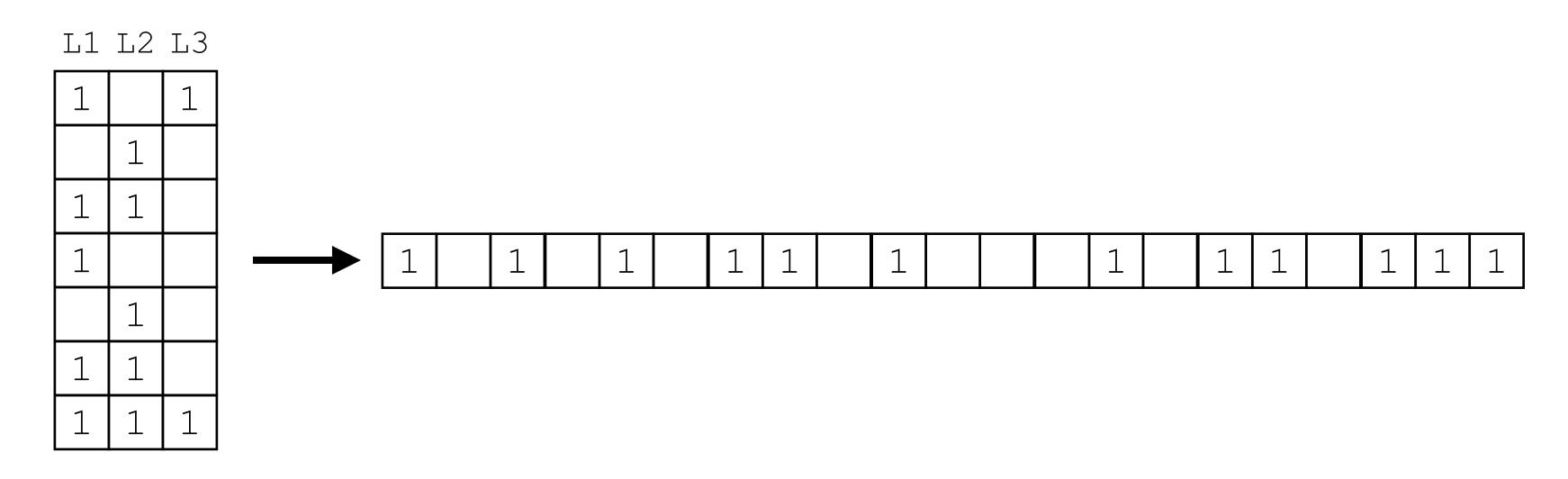
- 1. Column-major sparse representation
- 2. Multi-BRWT [Karasikov et al., 2019]



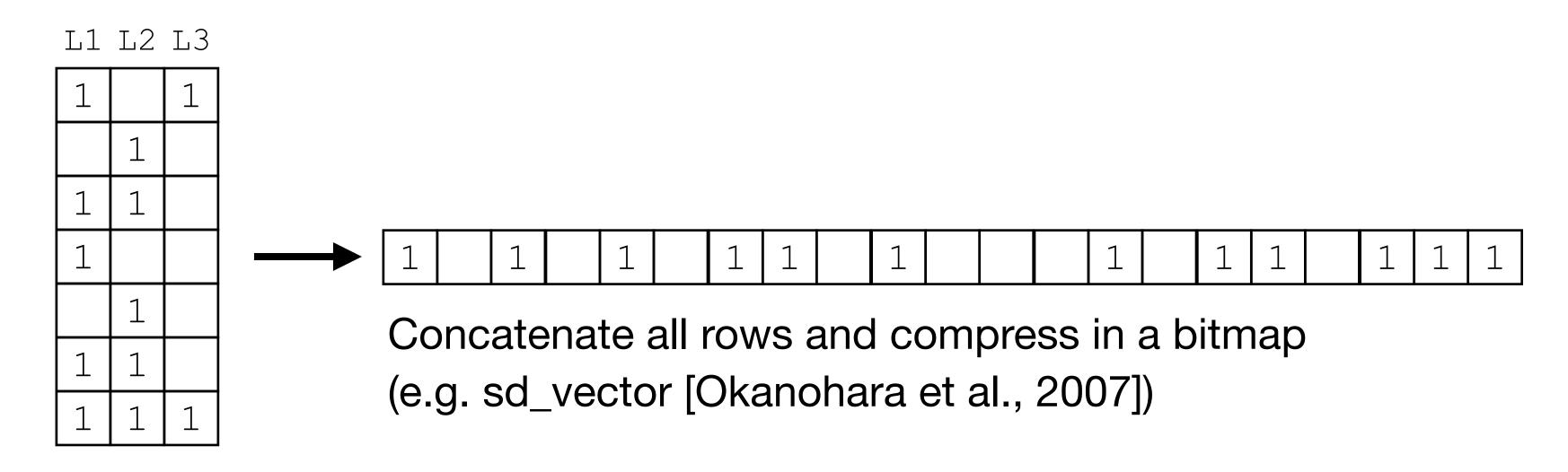
- 1. Column-major sparse representation
- 2. Multi-BRWT [Karasikov et al., 2019]



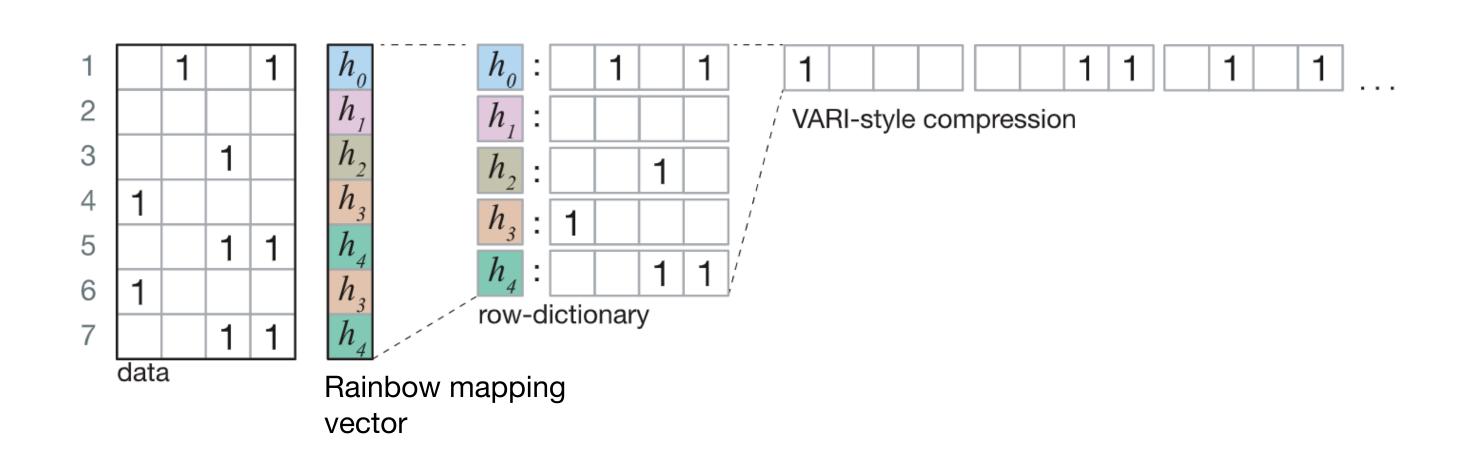
- 1. Column-major sparse representation
- 2. Multi-BRWT [Karasikov et al., 2019]
- 3. RowFlat (employed in VARI [Muggli et al., 2017])



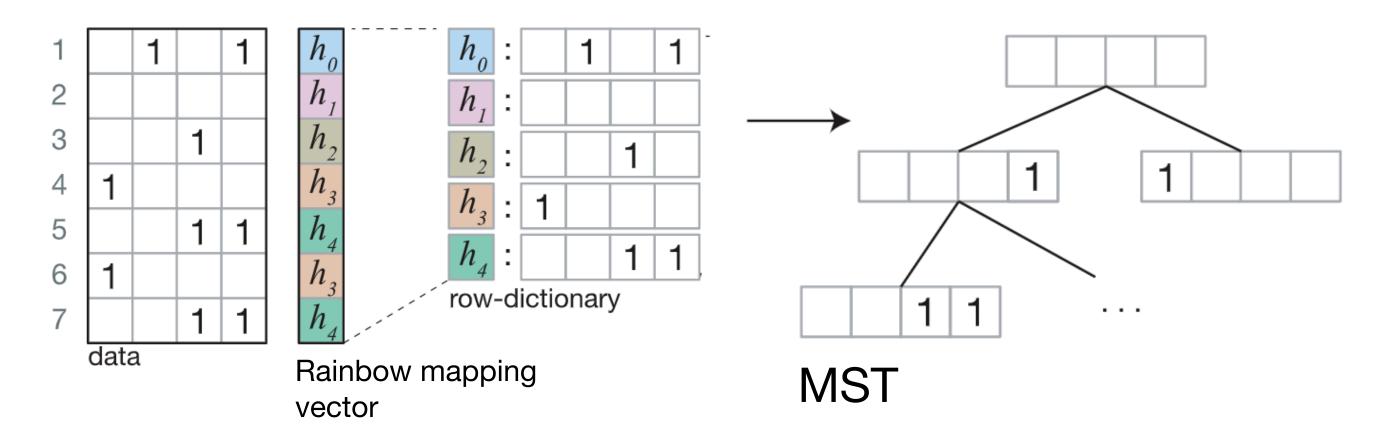
- 1. Column-major sparse representation
- 2. Multi-BRWT [Karasikov et al., 2019]
- 3. RowFlat (employed in VARI [Muggli et al., 2017])



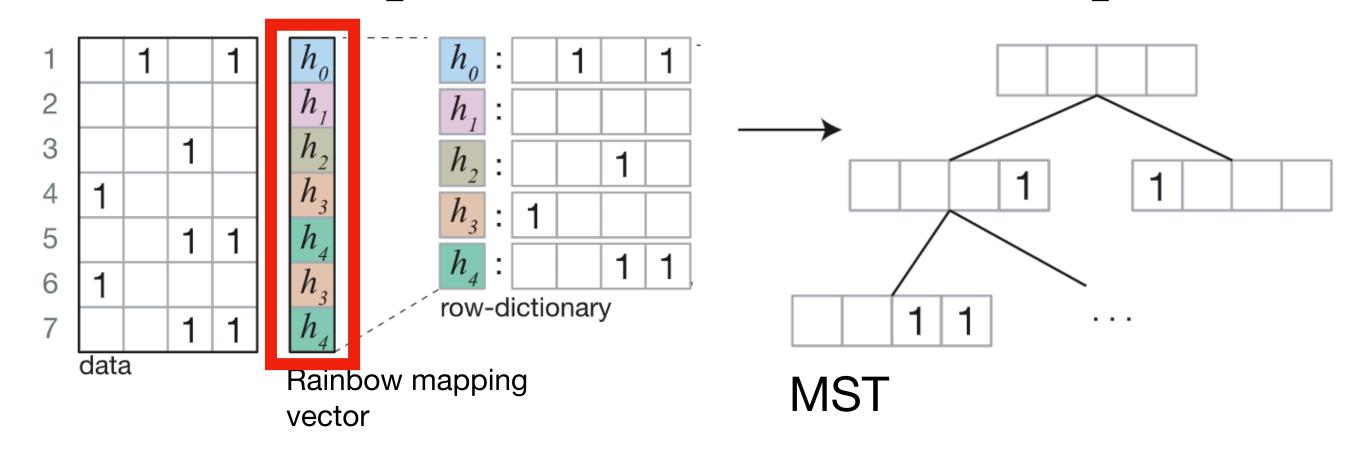
- 1. Column-major sparse representation
- 2. Multi-BRWT [Karasikov et al., 2019]
- 3. RowFlat (employed in VARI [Muggli et al., 2017])
- 4. Rainbowfish [Almodaresi et al., 2017]



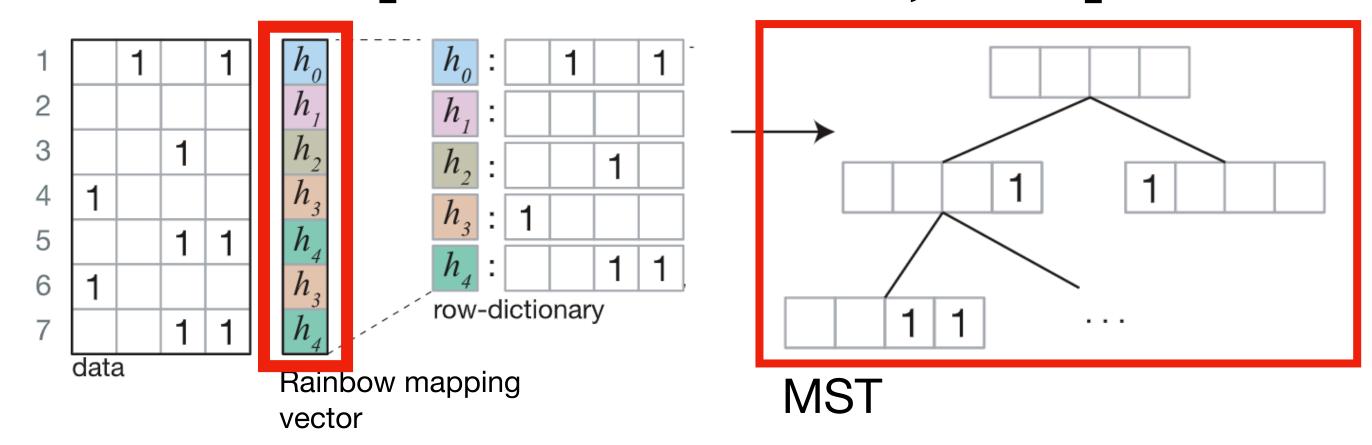
- 1. Column-major sparse representation
- 2. Multi-BRWT [Karasikov et al., 2019]
- 3. RowFlat (employed in VARI [Muggli et al., 2017])
- 4. Rainbowfish [Almodaresi et al., 2017]
- 5. Mantis-MST [Almodaresi et al., 2019]



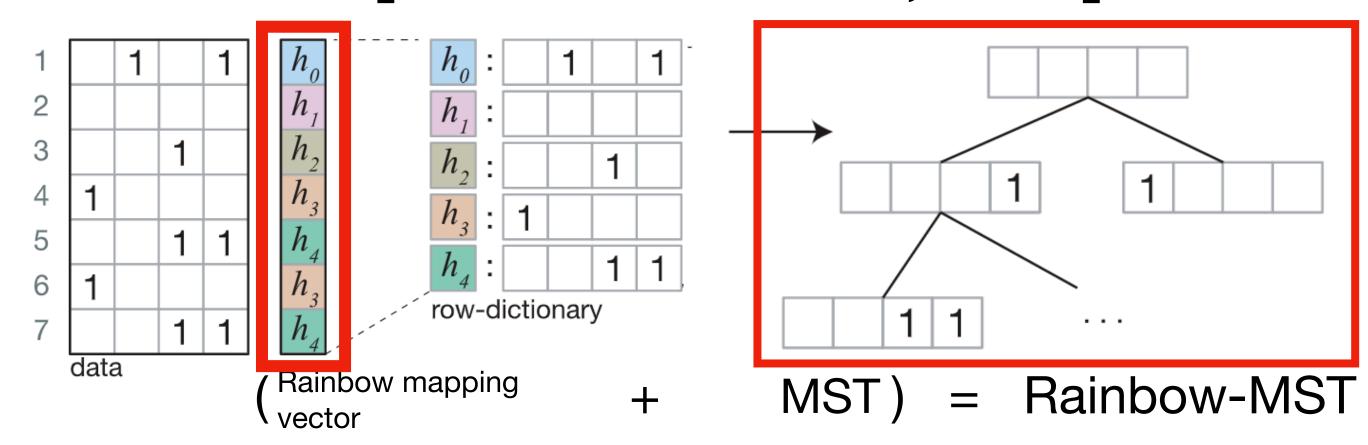
- 1. Column-major sparse representation
- 2. Multi-BRWT [Karasikov et al., 2019]
- 3. RowFlat (employed in VARI [Muggli et al., 2017])
- 4. Rainbowfish [Almodaresi et al., 2017]
- 5. Mantis-MST [Almodaresi et al., 2019]



- 1. Column-major sparse representation
- 2. Multi-BRWT [Karasikov et al., 2019]
- 3. RowFlat (employed in VARI [Muggli et al., 2017])
- 4. Rainbowfish [Almodaresi et al., 2017]
- 5. Mantis-MST [Almodaresi et al., 2019]



- 1. Column-major sparse representation
- 2. Multi-BRWT [Karasikov et al., 2019]
- 3. RowFlat (employed in VARI [Muggli et al., 2017])
- 4. Rainbowfish [Almodaresi et al., 2017]
- 5. Mantis-MST [Almodaresi et al., 2019]



RowDiff Transform

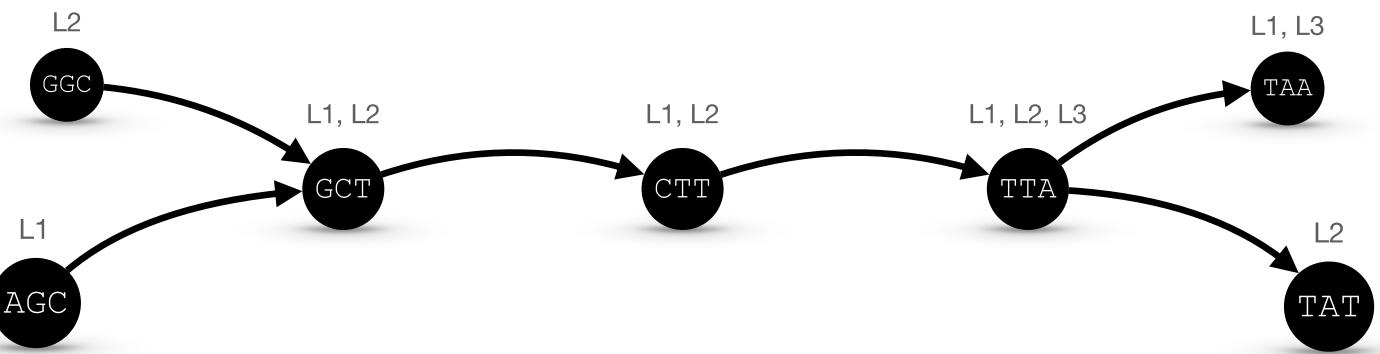
Observe:

Adjacent nodes share similar annotations

Key idea:

• Store only diffs

$$L^{\delta}(v) := L(v) \oplus L(v_{
m succ})$$
 $(\oplus ext{ is XOR})$



RowDiff Transform

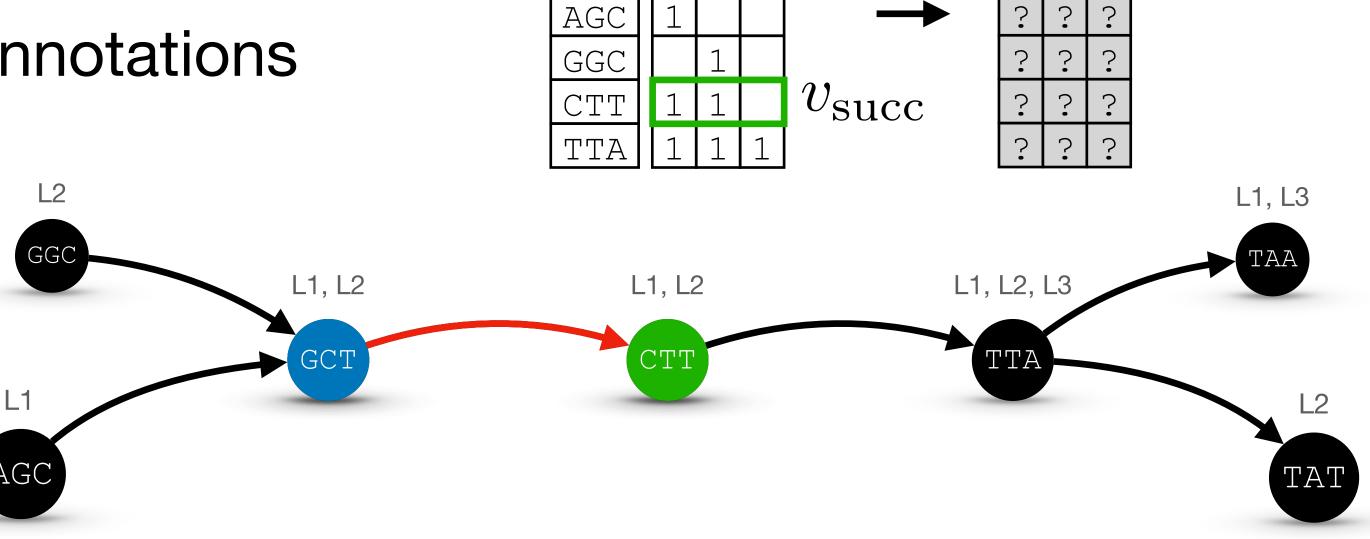
Observe:

Adjacent nodes share similar annotations

Key idea:

• Store only diffs

$$L^{\delta}(v) := L(v) \oplus L(v_{
m succ})$$
 $(\oplus \text{ is XOR})$



L1 L2 L3

GCT

RowDiff Transform

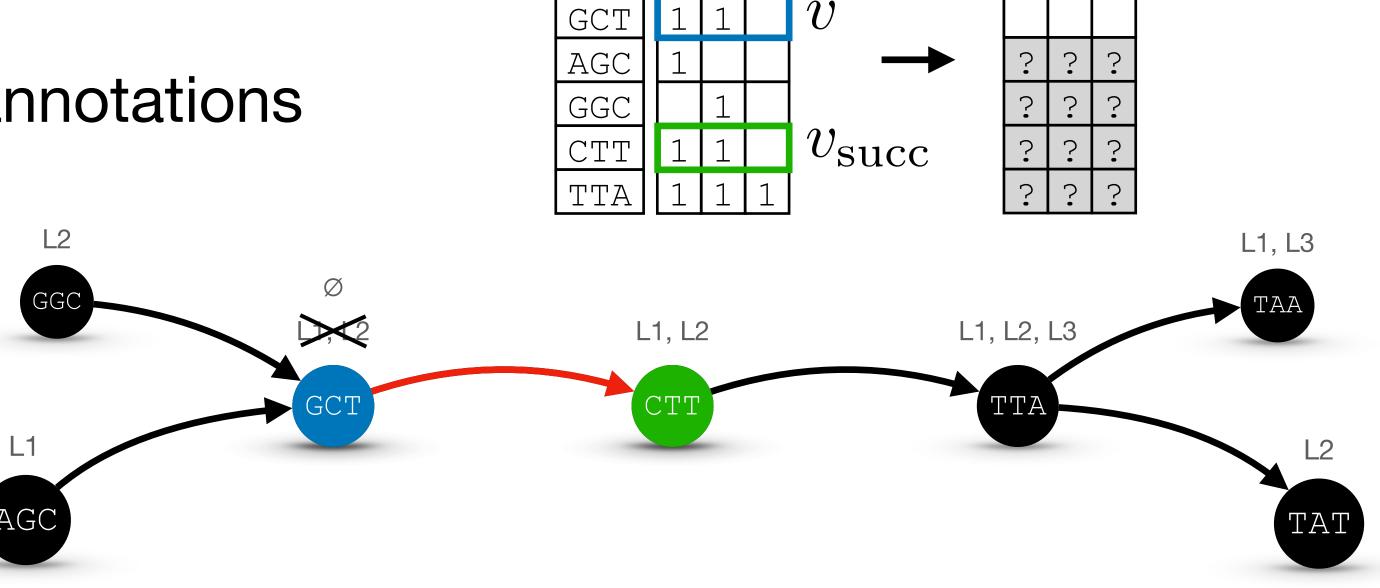
Observe:

Adjacent nodes share similar annotations

Key idea:

• Store only diffs

$$L^{\delta}(v) := L(v) \oplus L(v_{
m succ})$$
 $(\oplus \text{ is XOR})$



L1 L2 L3

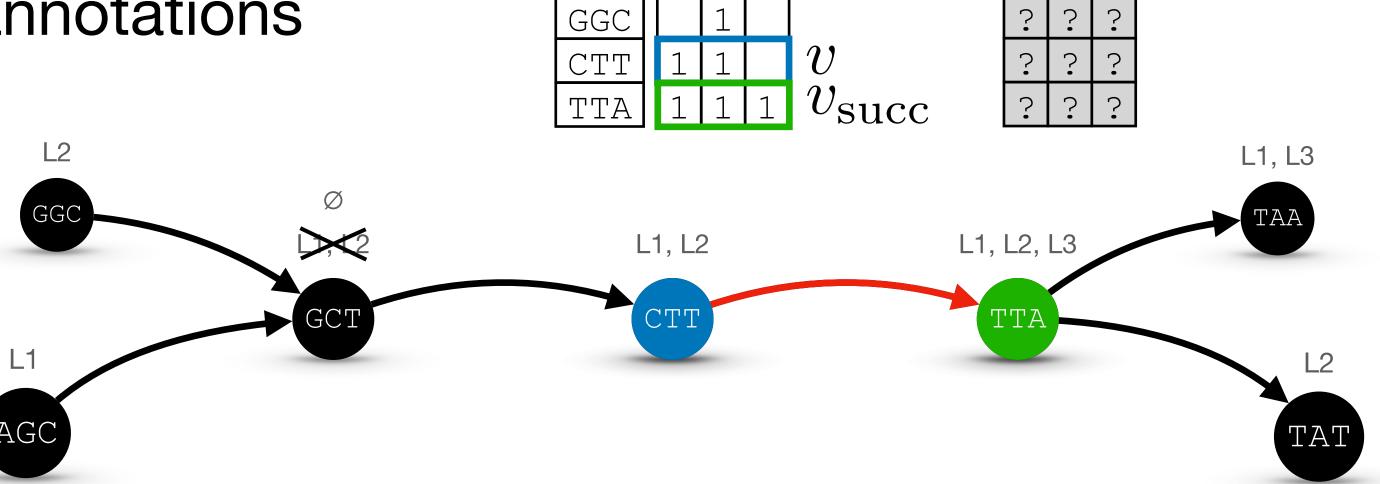
RowDiff Transform

Observe:

Adjacent nodes share similar annotations

Key idea:

• Store only diffs



L1 L2 L3

GCT

AGC

RowDiff Transform

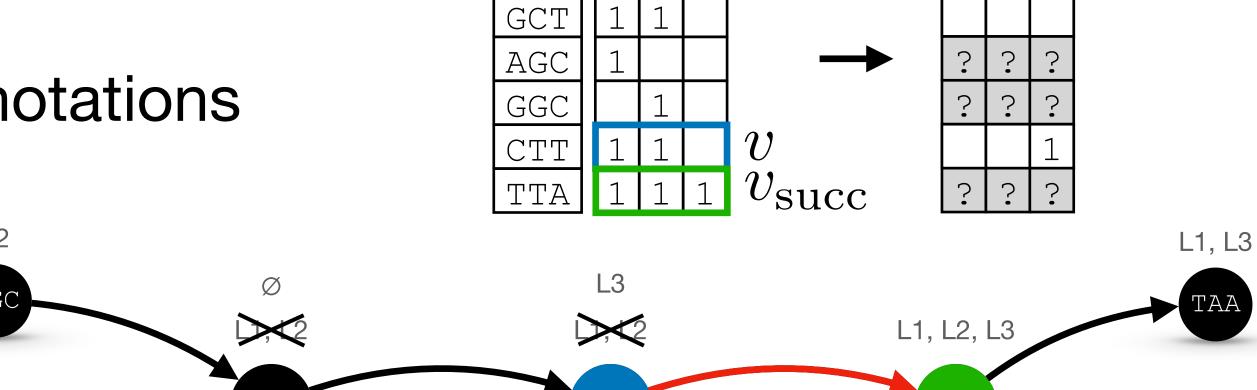
Observe:

Adjacent nodes share similar annotations

Key idea:

• Store only diffs

$$L^{\delta}(v) := L(v) \oplus L(v_{
m succ})$$
 $(\oplus \text{ is XOR})$



L1 L2 L3

RowDiff Transform

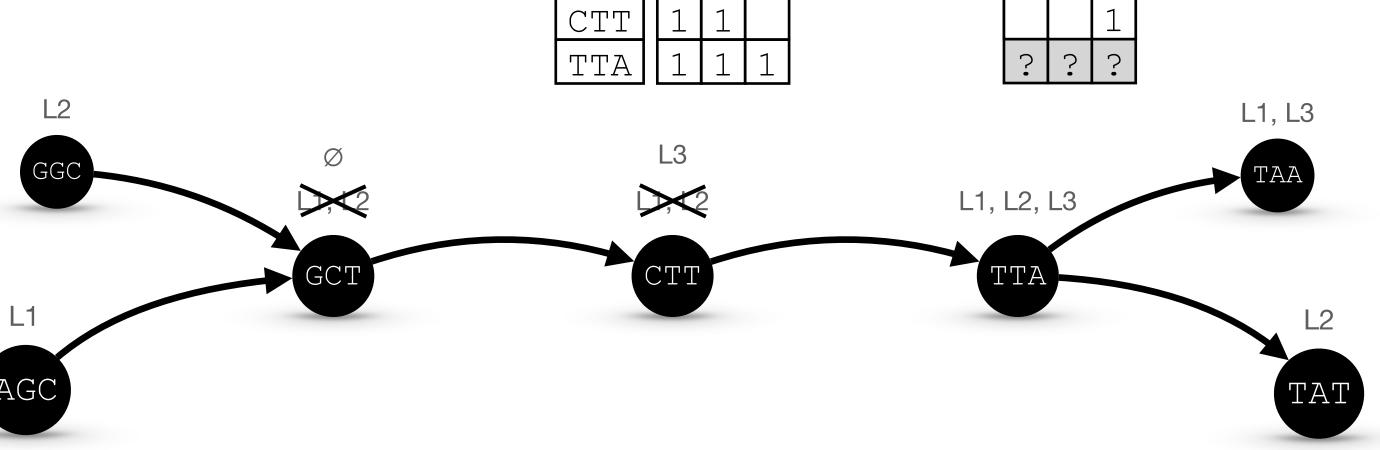
Observe:

Adjacent nodes share similar annotations

Key idea:

• Store only diffs

$$L^{\delta}(v) := L(v) \oplus L(v_{
m succ})$$
 $(\oplus ext{ is XOR})$



L1 L2 L3

GCT

AGC

GGC

RowDiff Transform

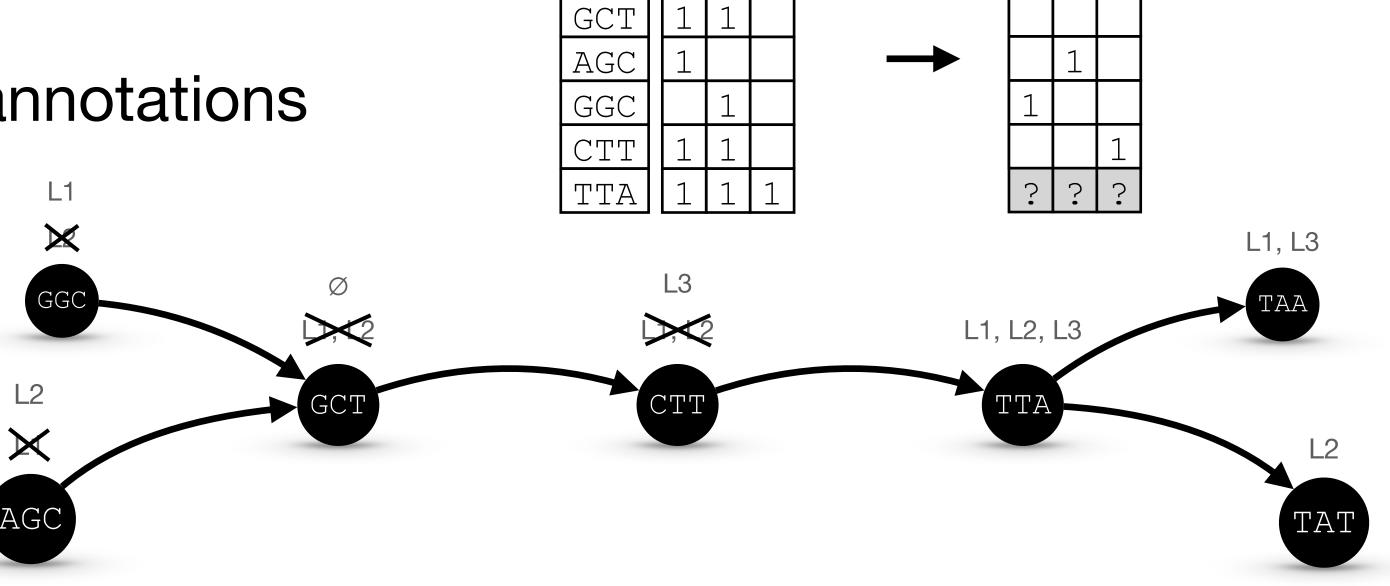
Observe:

Adjacent nodes share similar annotations

Key idea:

• Store only diffs

$$L^{\delta}(v) := L(v) \oplus L(v_{
m succ})$$
 $(\oplus \text{ is XOR})$



L1 L2 L3

RowDiff Transform

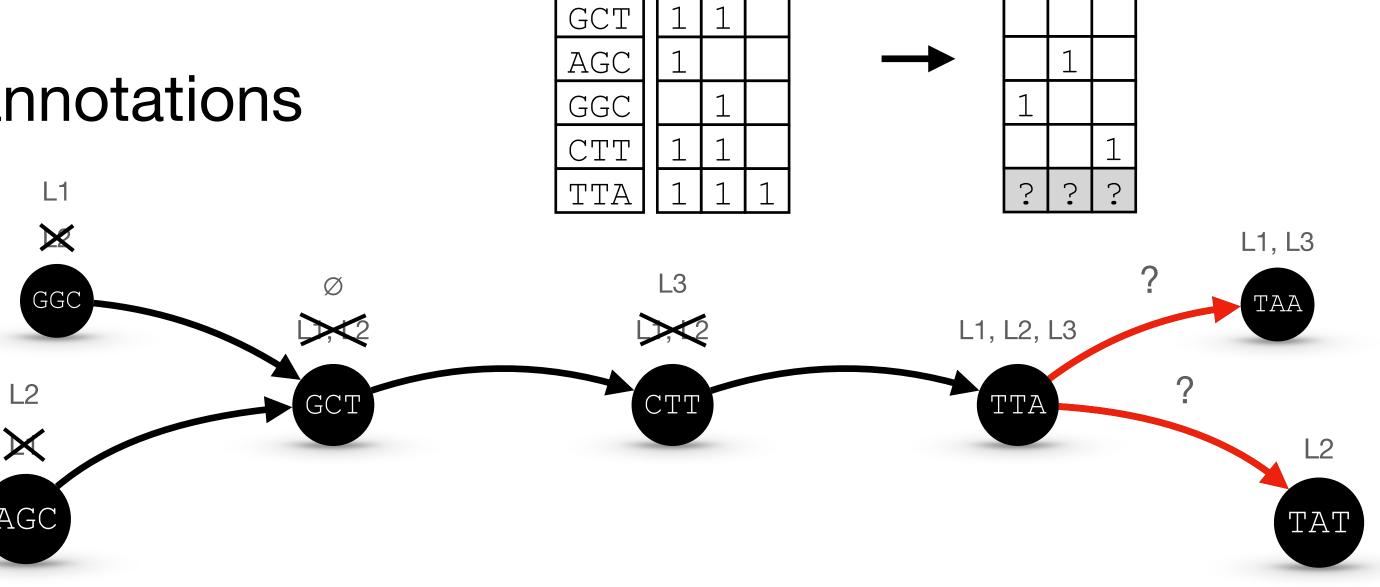
Observe:

Adjacent nodes share similar annotations

Key idea:

• Store only diffs

$$L^{\delta}(v) := L(v) \oplus L(v_{
m succ})$$
 $(\oplus \text{ is XOR})$



L1 L2 L3

RowDiff Transform

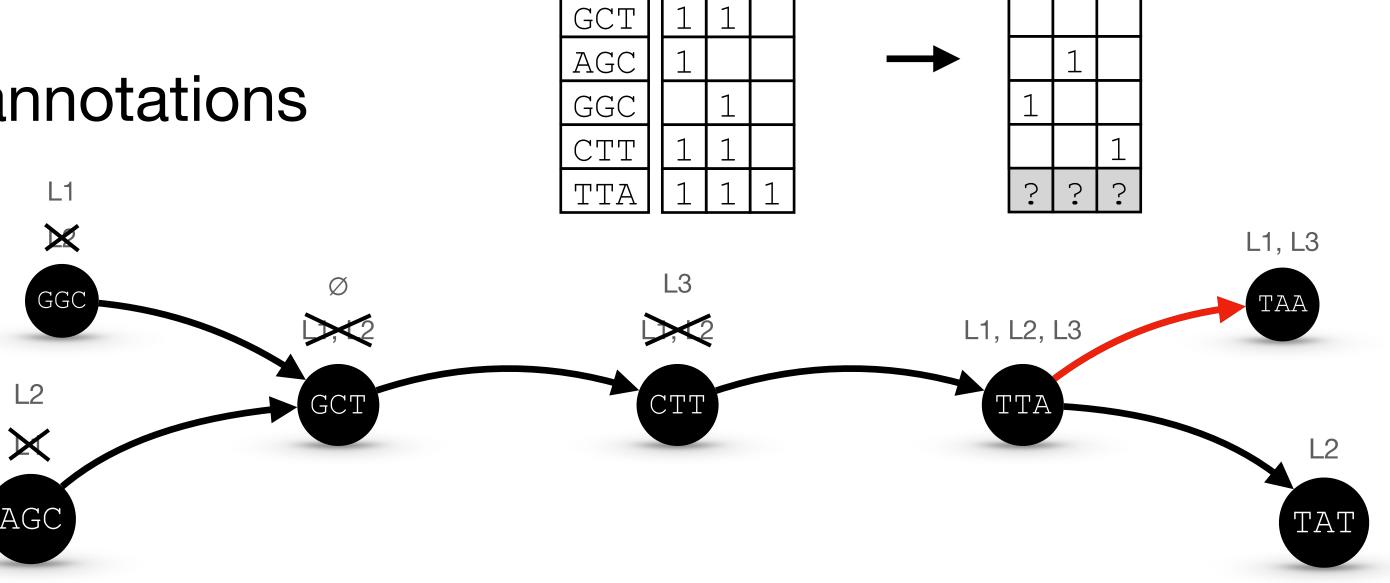
Observe:

Adjacent nodes share similar annotations

Key idea:

• Store only diffs

$$L^{\delta}(v) := L(v) \oplus L(v_{
m succ})$$
 $(\oplus \text{ is XOR})$



L1 L2 L3

L1 L2 L3

RowDiff Transform

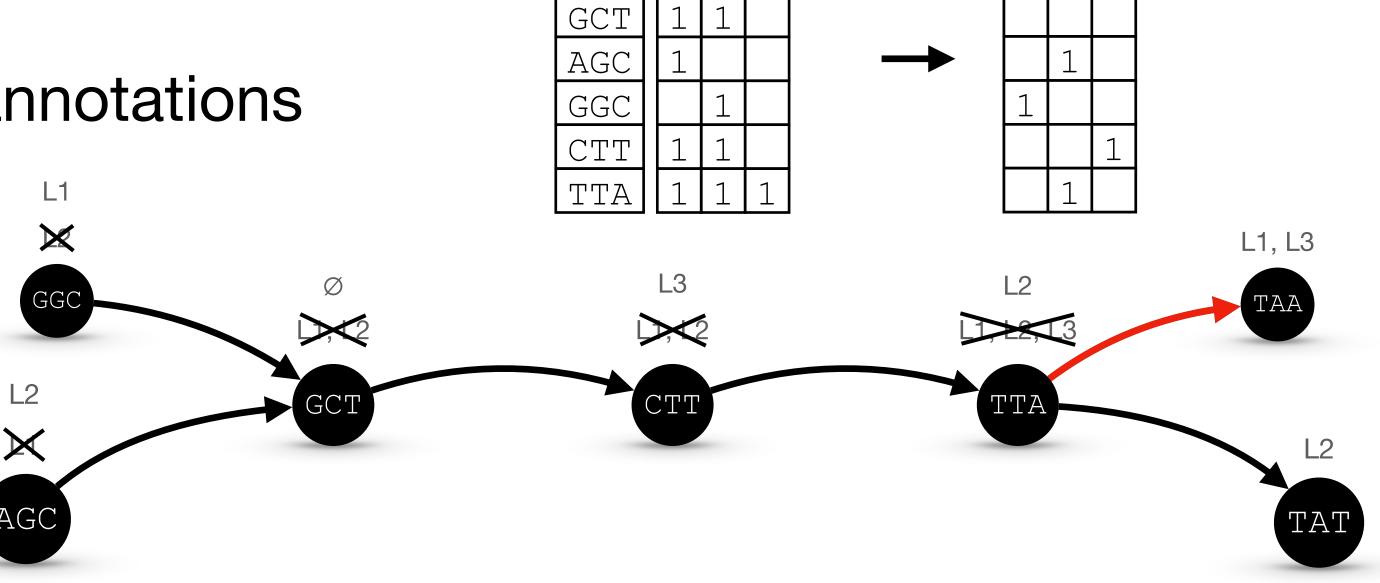
Observe:

Adjacent nodes share similar annotations

Key idea:

• Store only diffs

$$L^{\delta}(v) := L(v) \oplus L(v_{
m succ})$$
 $(\oplus \text{ is XOR})$



L1 L2 L3

L1 L2 L3

RowDiff Transform

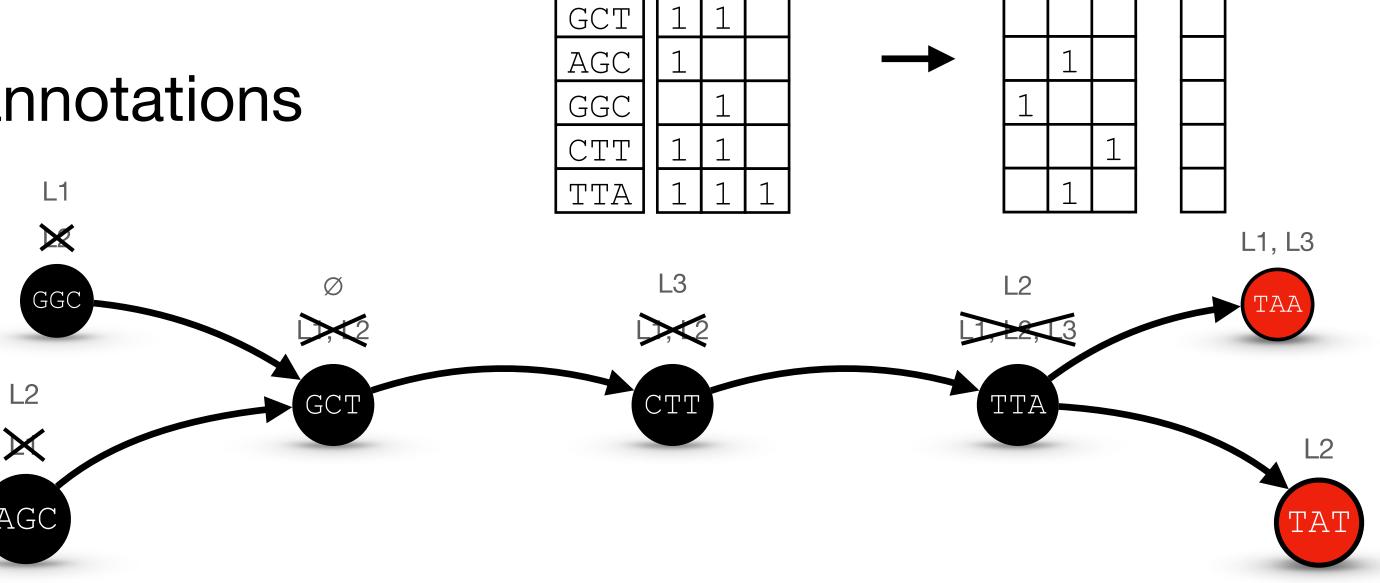
Observe:

Adjacent nodes share similar annotations

Key idea:

• Store only diffs

$$L^{\delta}(v) := L(v) \oplus L(v_{
m succ})$$
 $(\oplus \text{ is XOR})$



L1 L2 L3

L1 L2 L3

RowDiff Transform

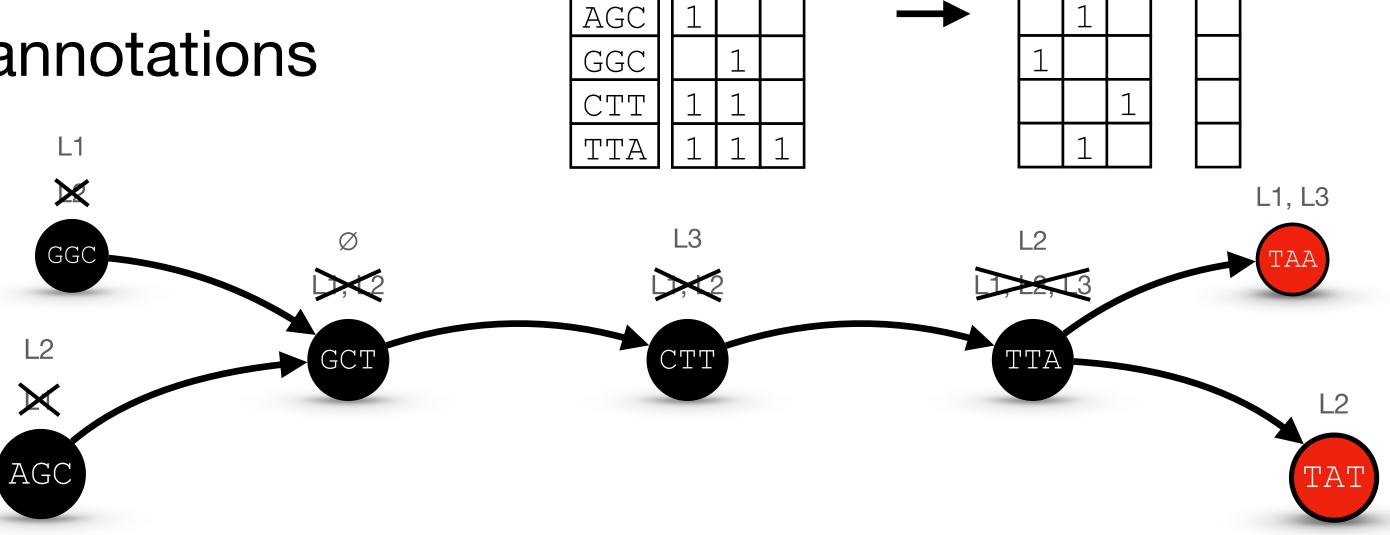
Observe:

Adjacent nodes share similar annotations

Key idea:

Store only diffs

$$L^{\delta}(v) := L(v) \oplus L(v_{
m succ})$$
 $(\oplus ext{ is XOR})$



GCT

L1 L2 L3

L1 L2 L3

RowDiff effectively **transforms** the matrix:

- makes it sparser, and thus, more compressible
- can be applied with any matrix representation
- the overhead is very small (<1 bit per node)

RowDiff Transform

Observe:

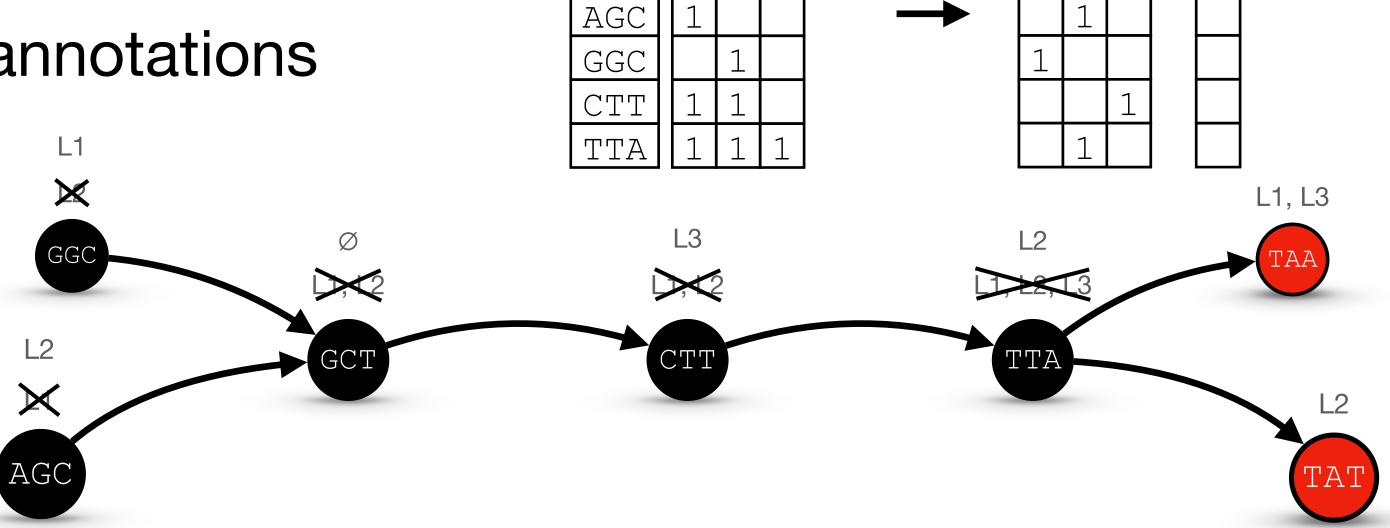
Adjacent nodes share similar annotations

Key idea:

Store only diffs

$$L^{\delta}(v) := L(v) \oplus L(v_{\mathrm{succ}})$$

Reconstruct



GCT

L1 L2 L3

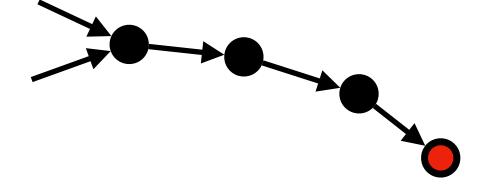
L1 L2 L3

RowDiff effectively **transforms** the matrix:

- makes it sparser, and thus, more compressible
- can be applied with any matrix representation
- the overhead is very small (<1 bit per node)

RowDiff: Query

```
1: function ReconstructAnnotation(i)
2: row \leftarrow A_i^*
3: while a_i = 0 do \Rightarrow current vertex is not an anchor
4: i \leftarrow succ(i)
5: row \leftarrow row \oplus A_i^*
6: end while
7: return row
8: end function
```

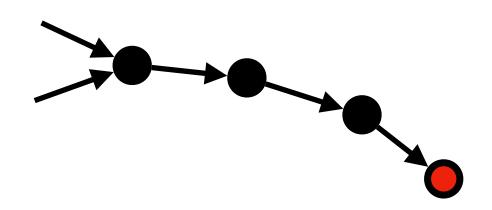


RowDiff: Query

Algorithm 1 Row annotation reconstruction

```
1: function ReconstructAnnotation(i)
2: row \leftarrow A_i^*
3: while a_i = 0 do \Rightarrow current vertex is not an anchor
4: i \leftarrow succ(i)
5: row \leftarrow row \oplus A_i^*
6: end while
7: return row
8: end function
```

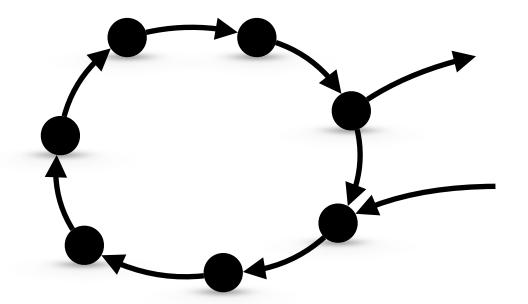
1. Every sink node (with no outgoing edges) must be anchored



RowDiff: Query

```
1: function ReconstructAnnotation(i)
2: row \leftarrow A_i^*
3: while a_i = 0 do \Rightarrow current vertex is not an anchor
4: i \leftarrow succ(i)
5: row \leftarrow row \oplus A_i^*
6: end while
7: return row
8: end function
```

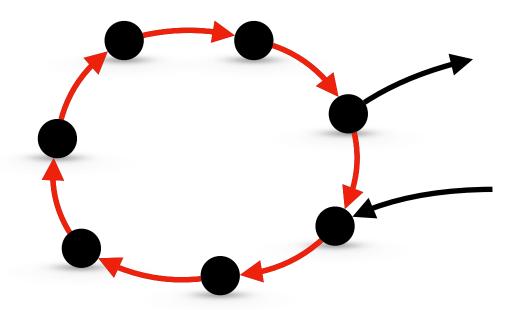
- 1. Every sink node (with no outgoing edges) must be anchored
- 2. Every row-diff cycle must have at least one anchor node in it



RowDiff: Query

```
1: function ReconstructAnnotation(i)
2: row \leftarrow A_i^*
3: while a_i = 0 do \Rightarrow current vertex is not an anchor
4: i \leftarrow succ(i)
5: row \leftarrow row \oplus A_i^*
6: end while
7: return row
8: end function
```

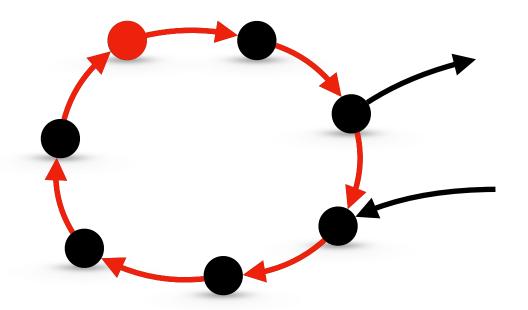
- 1. Every sink node (with no outgoing edges) must be anchored
- 2. Every row-diff cycle must have at least one anchor node in it



RowDiff: Query

```
1: function ReconstructAnnotation(i)
2: row \leftarrow A_i^*
3: while a_i = 0 do \Rightarrow current vertex is not an anchor
4: i \leftarrow succ(i)
5: row \leftarrow row \oplus A_i^*
6: end while
7: return row
8: end function
```

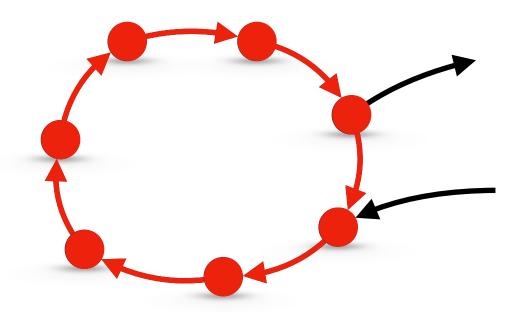
- 1. Every sink node (with no outgoing edges) must be anchored
- 2. Every row-diff cycle must have at least one anchor node in it



RowDiff: Query

```
1: function ReconstructAnnotation(i)
2: row \leftarrow A_i^*
3: while a_i = 0 do \Rightarrow current vertex is not an anchor
4: i \leftarrow succ(i)
5: row \leftarrow row \oplus A_i^*
6: end while
7: return row
8: end function
```

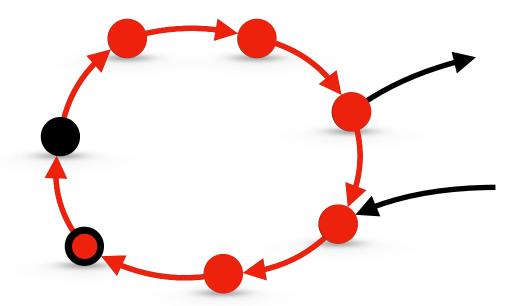
- 1. Every sink node (with no outgoing edges) must be anchored
- 2. Every row-diff cycle must have at least one anchor node in it



RowDiff: Query

```
1: function ReconstructAnnotation(i)
2: row \leftarrow A_i^*
3: while a_i = 0 do 
ightharpoonup current vertex is not an anchor
4: <math>i \leftarrow succ(i)
5: row \leftarrow row \oplus A_i^*
6: end while
7: return row
8: end function
```

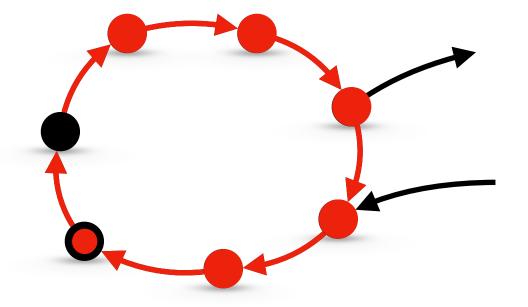
- 1. Every sink node (with no outgoing edges) must be anchored
- 2. Every row-diff cycle must have at least one anchor node in it

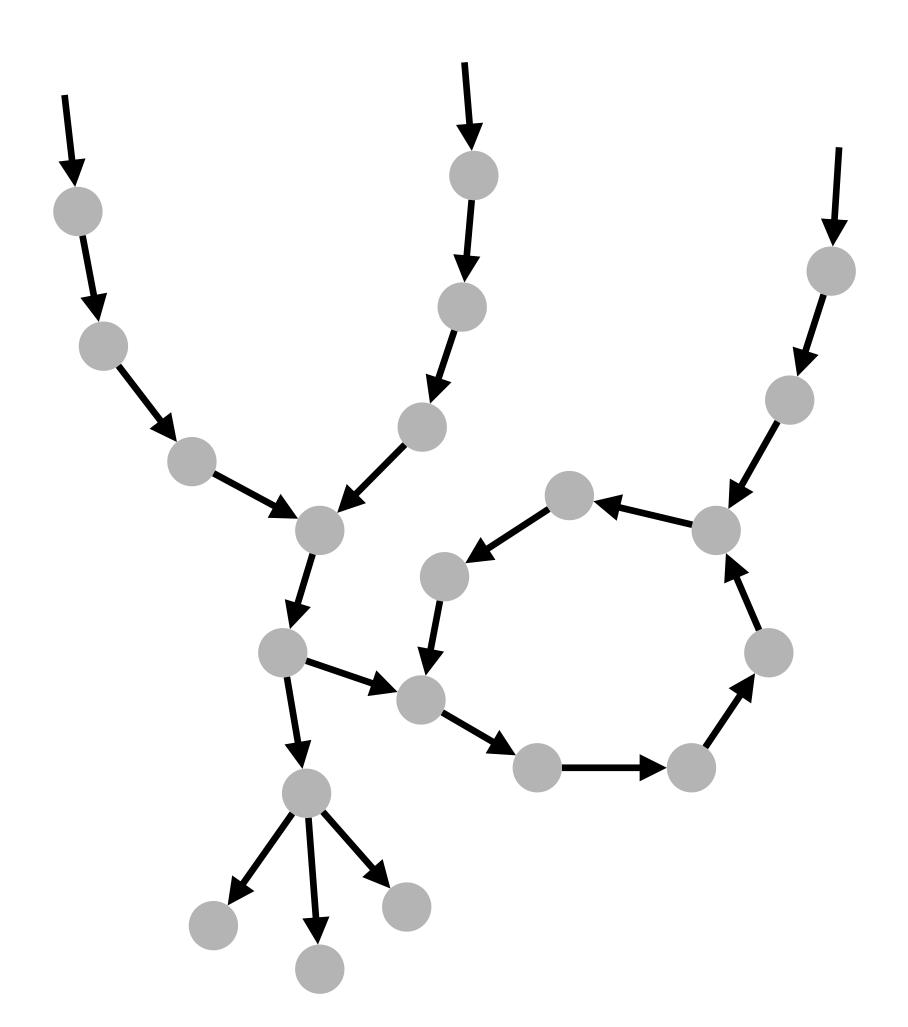


RowDiff: Query

```
1: function ReconstructAnnotation(i)
2: row \leftarrow A_i^*
3: while a_i = 0 do \Rightarrow current vertex is not an anchor
4: i \leftarrow succ(i)
5: row \leftarrow row \oplus A_i^*
6: end while
7: return row
8: end function
```

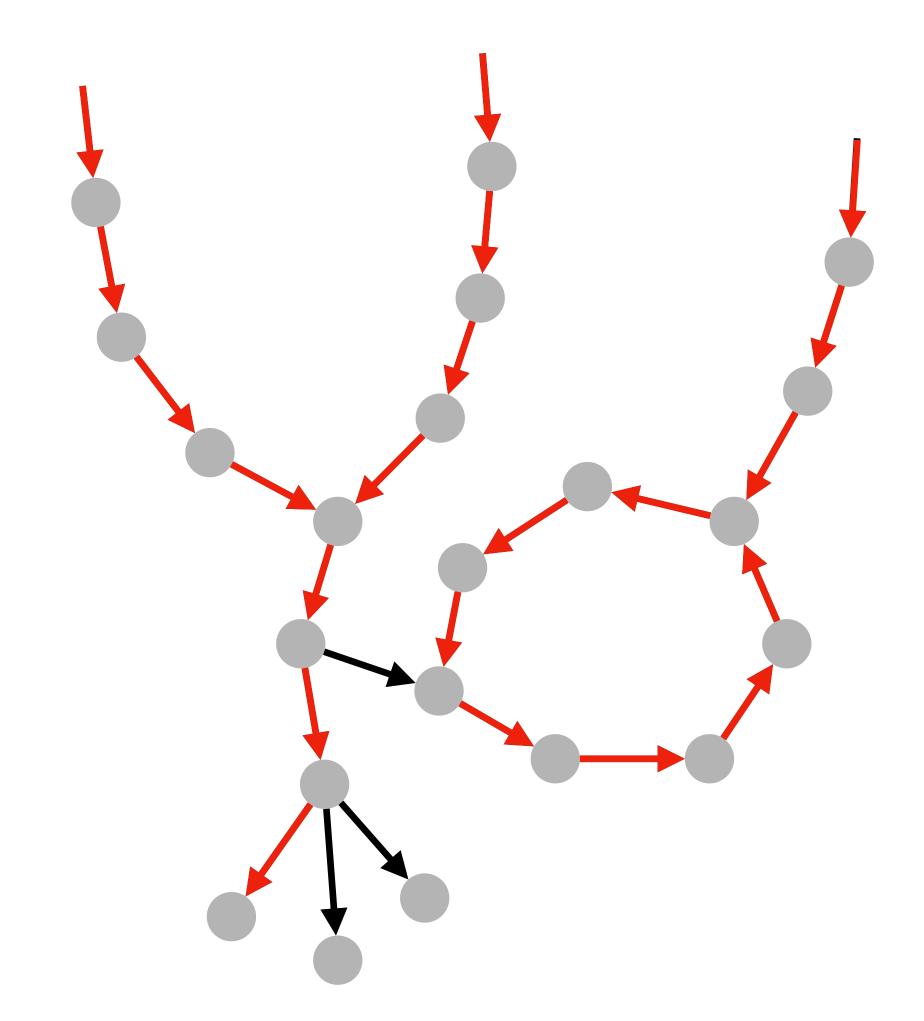
- 1. Every sink node (with no outgoing edges) must be anchored
- 2. Every row-diff cycle must have at least one anchor node in it
- 3. Length of each row-diff path is bounded by a constant $\sim M$ (to ensure a constant query time complexity)



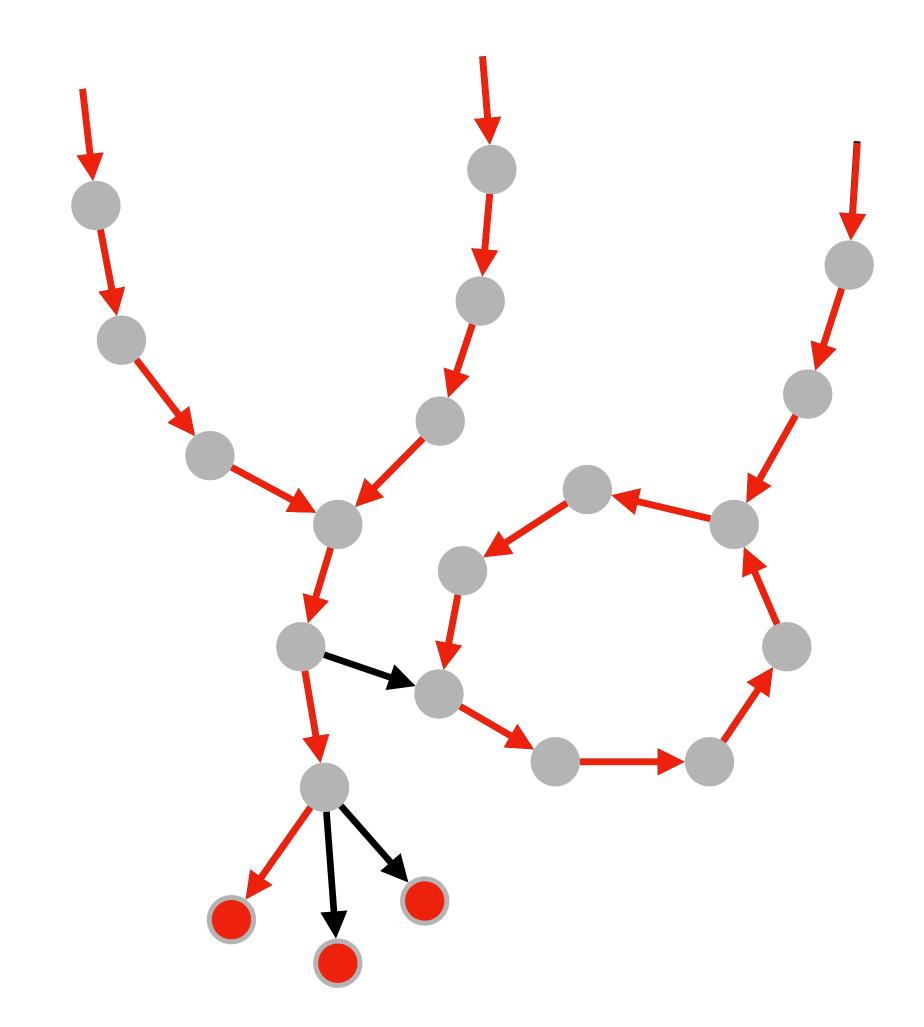


RowDiff: Anchor Assignment

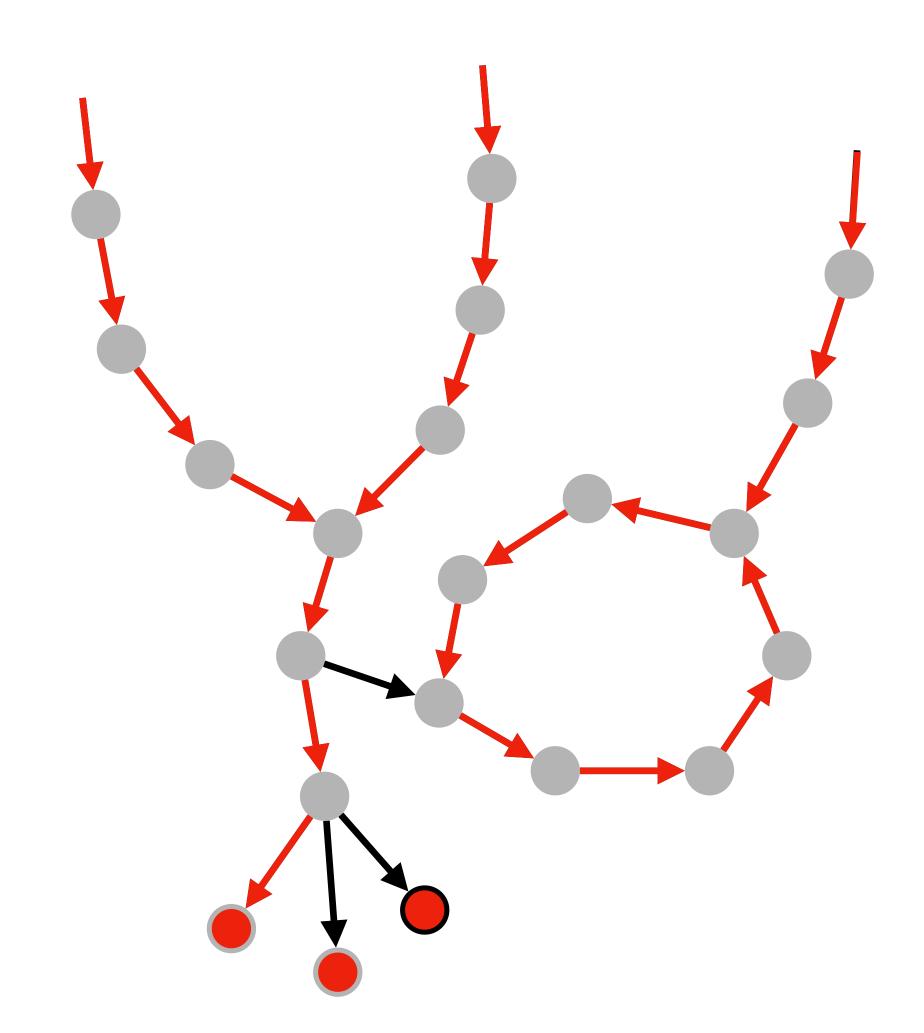
1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)



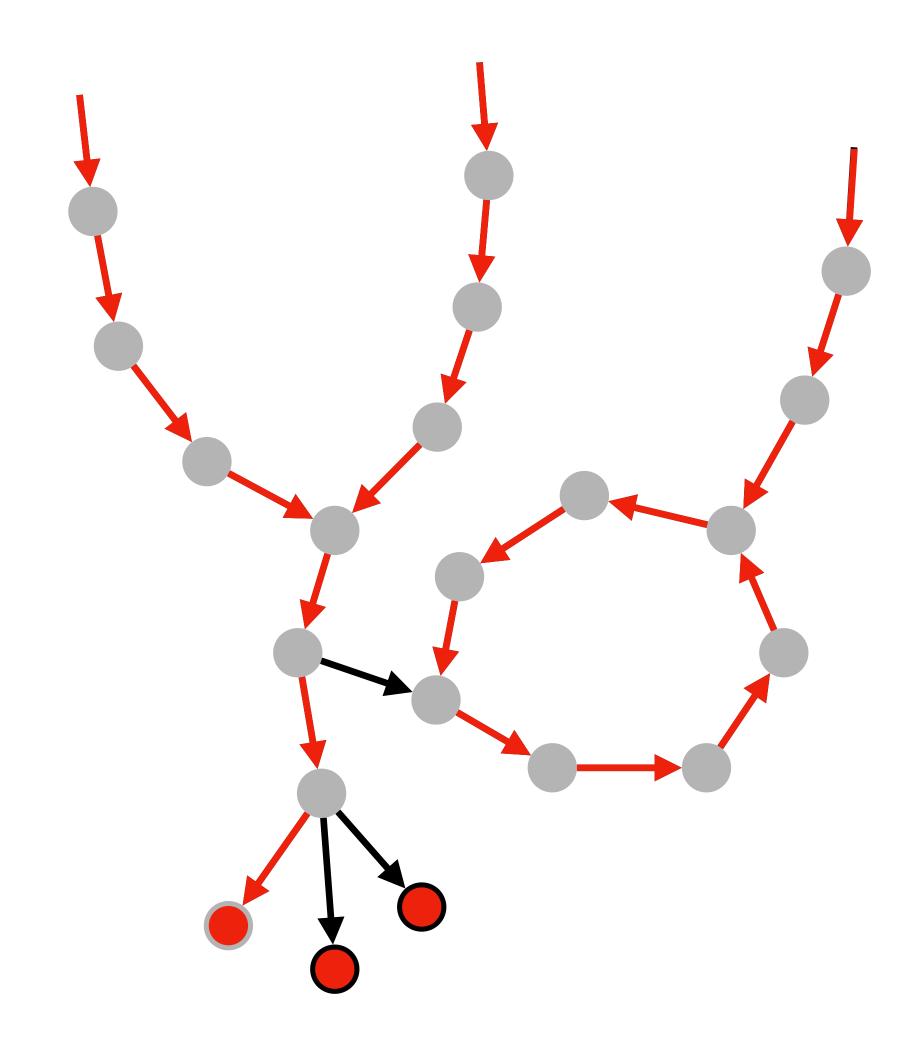
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes



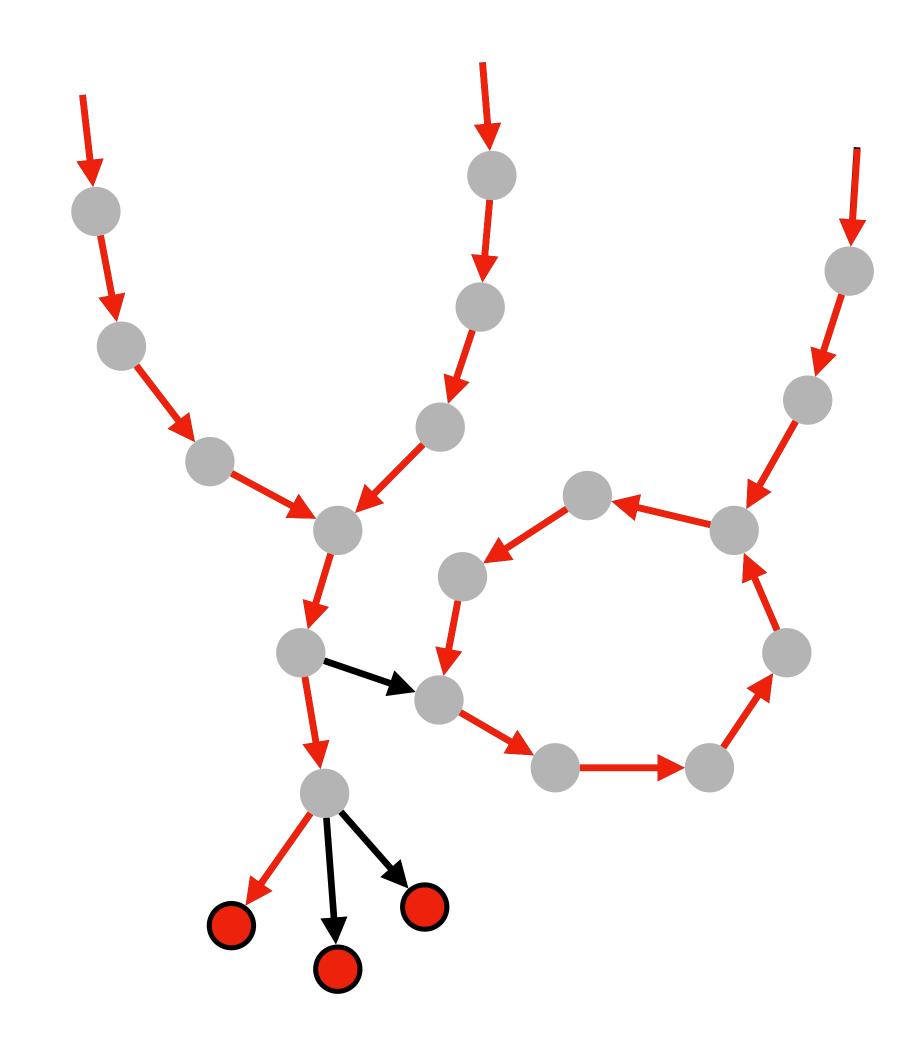
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)



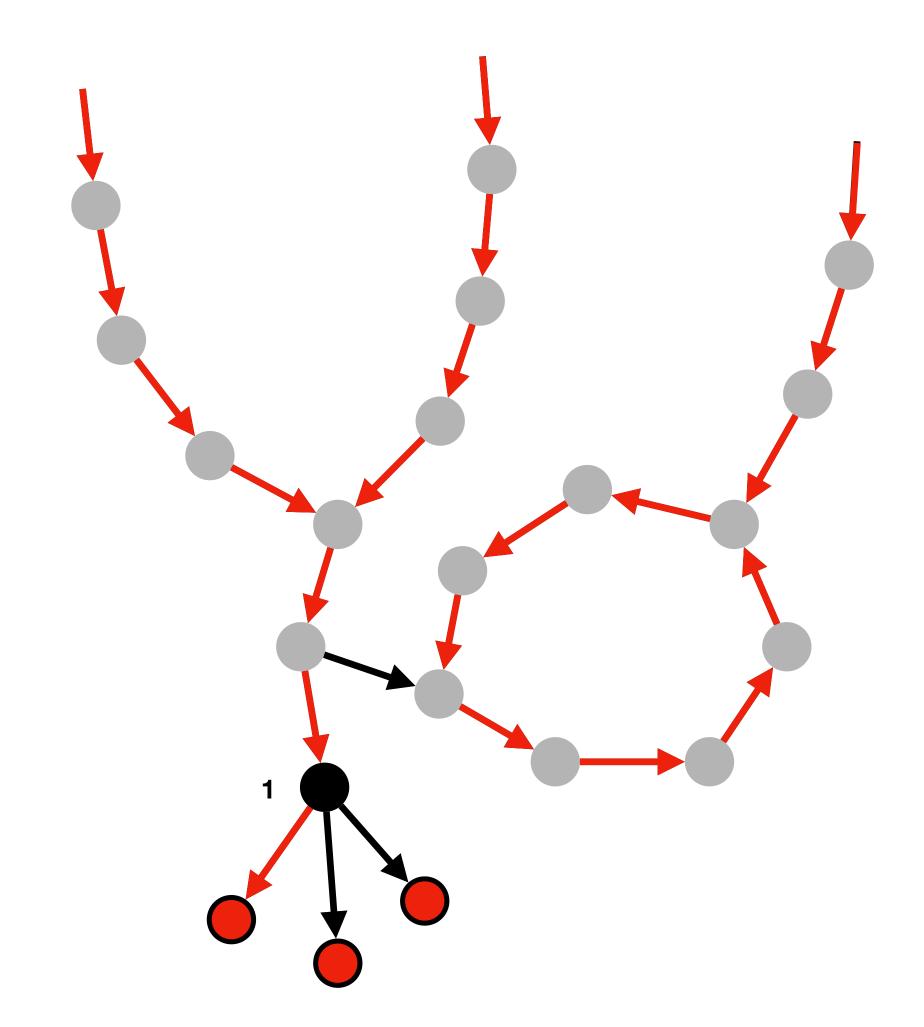
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)



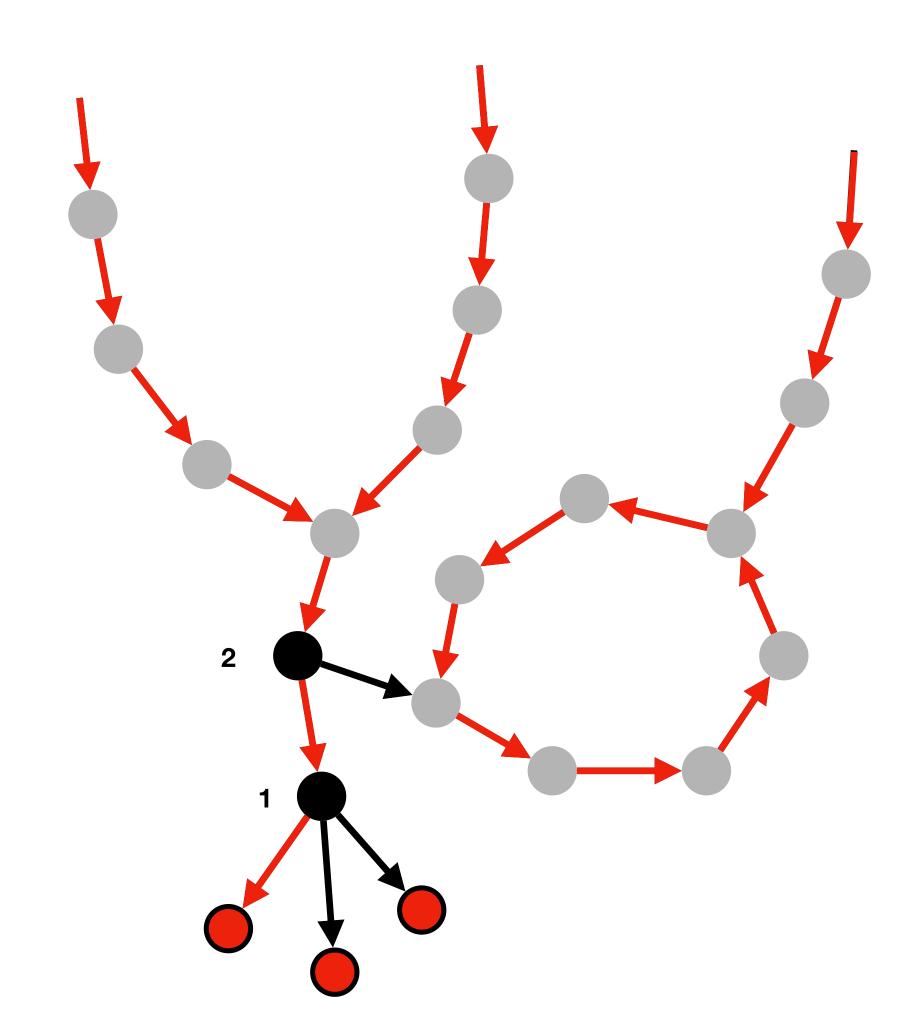
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)



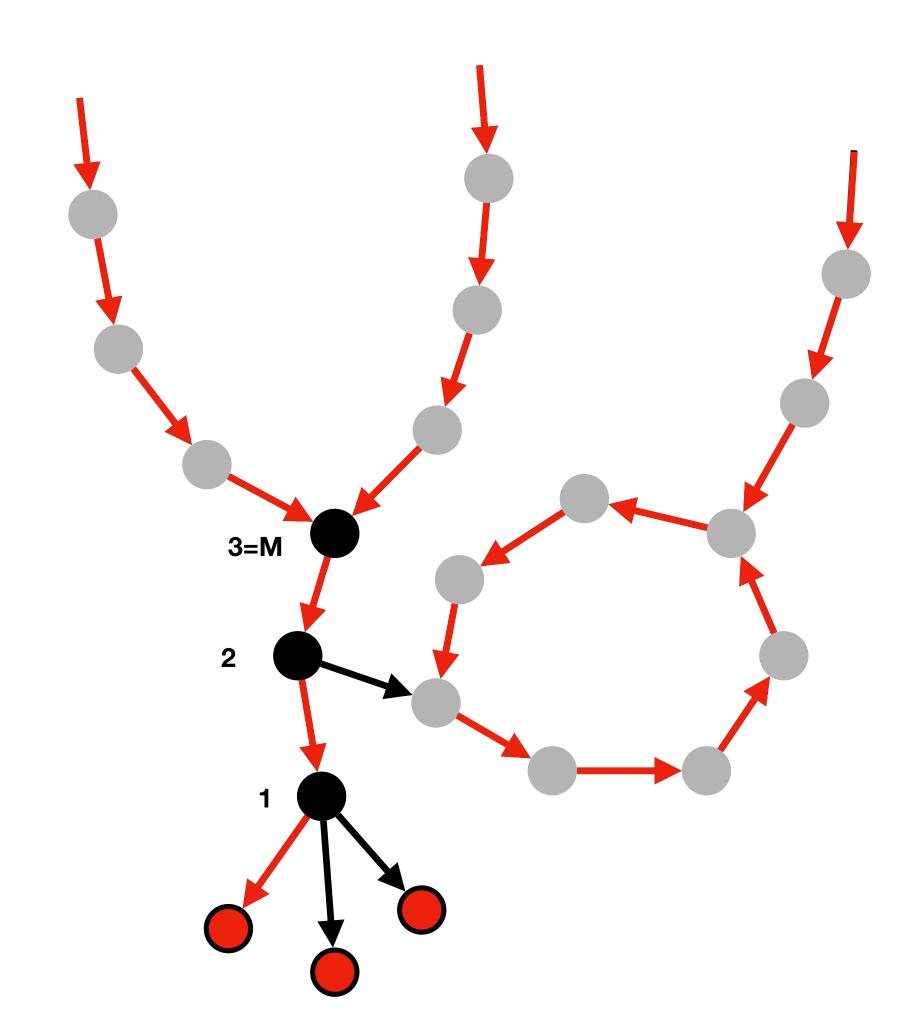
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)



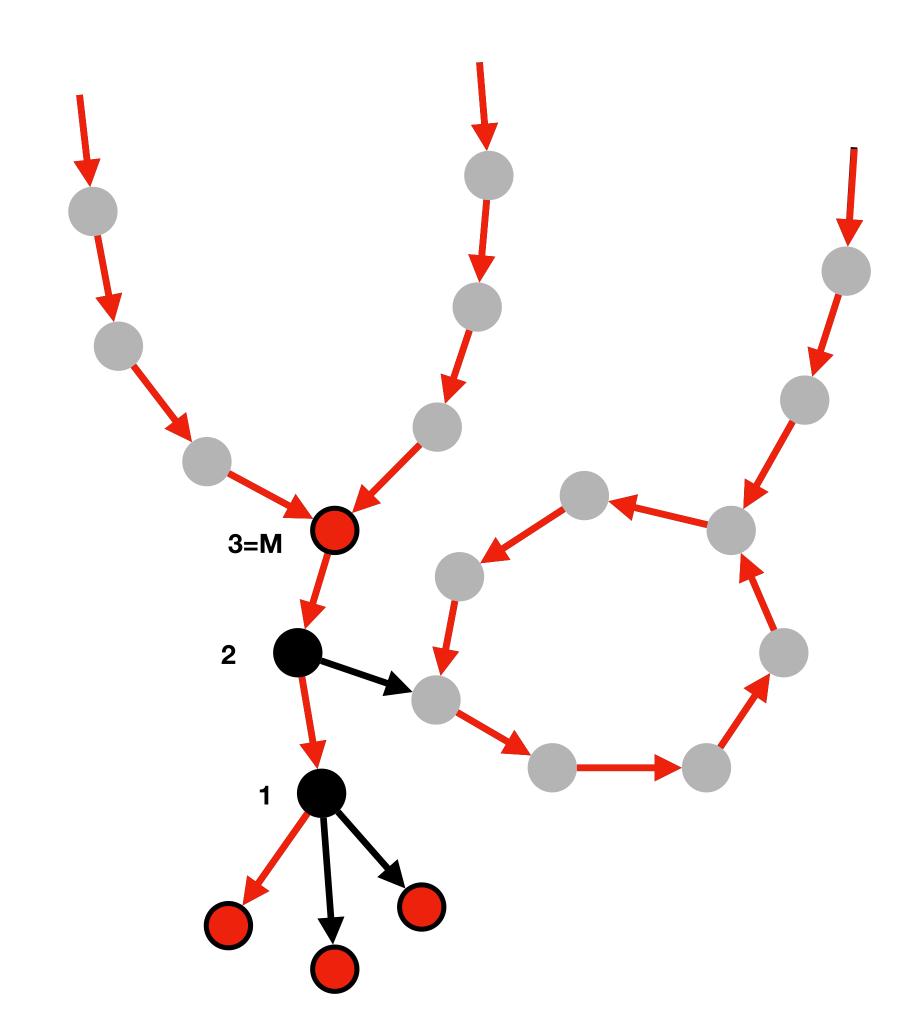
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)



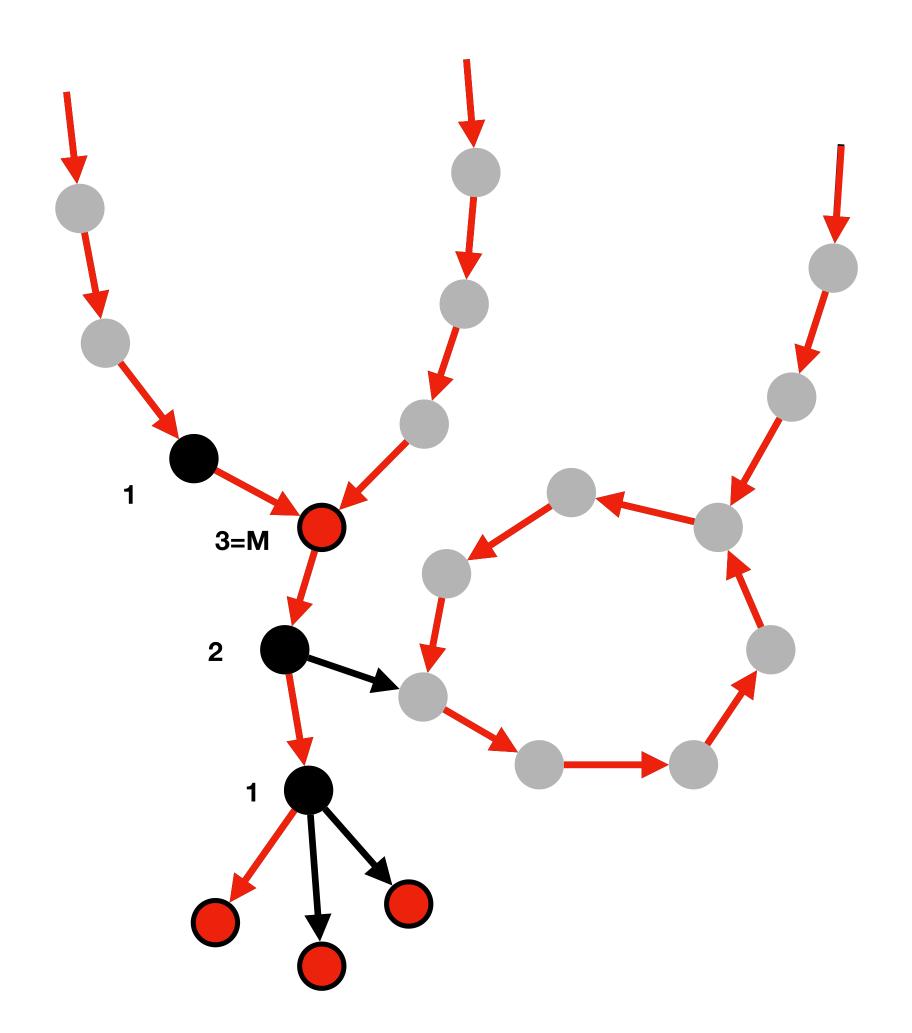
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)



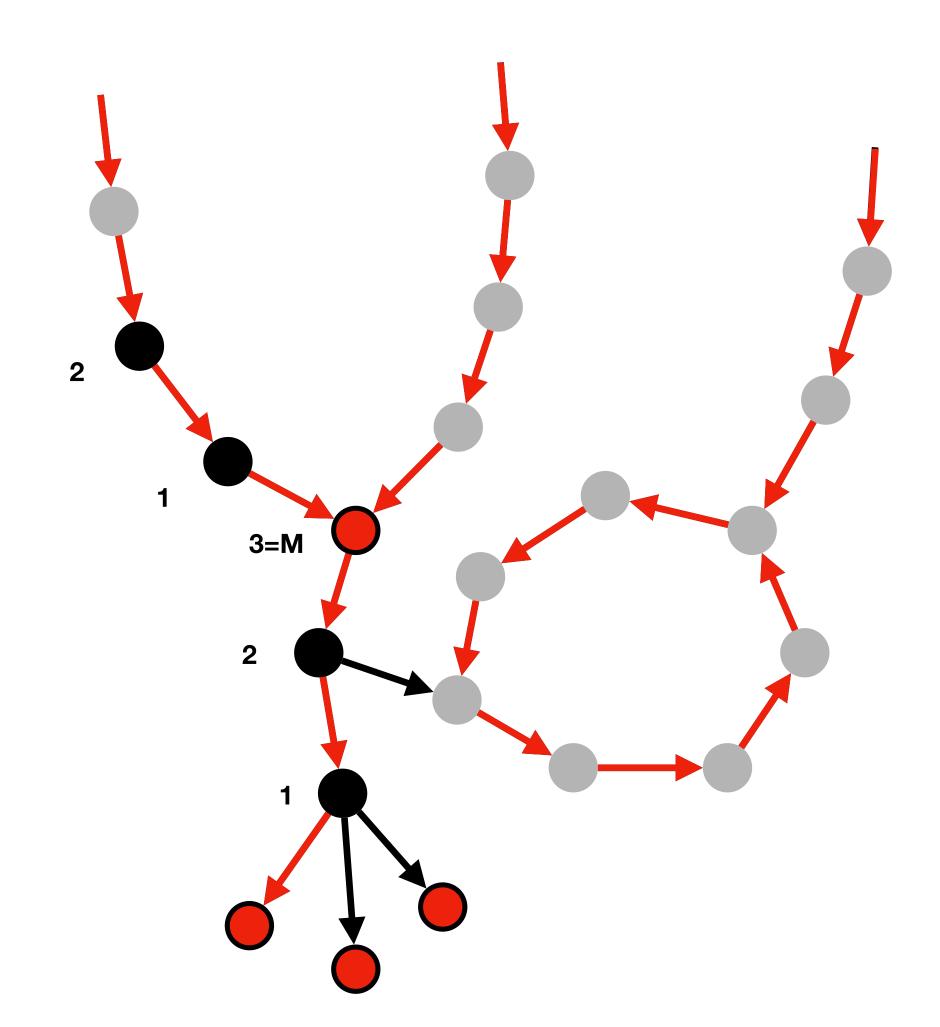
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)



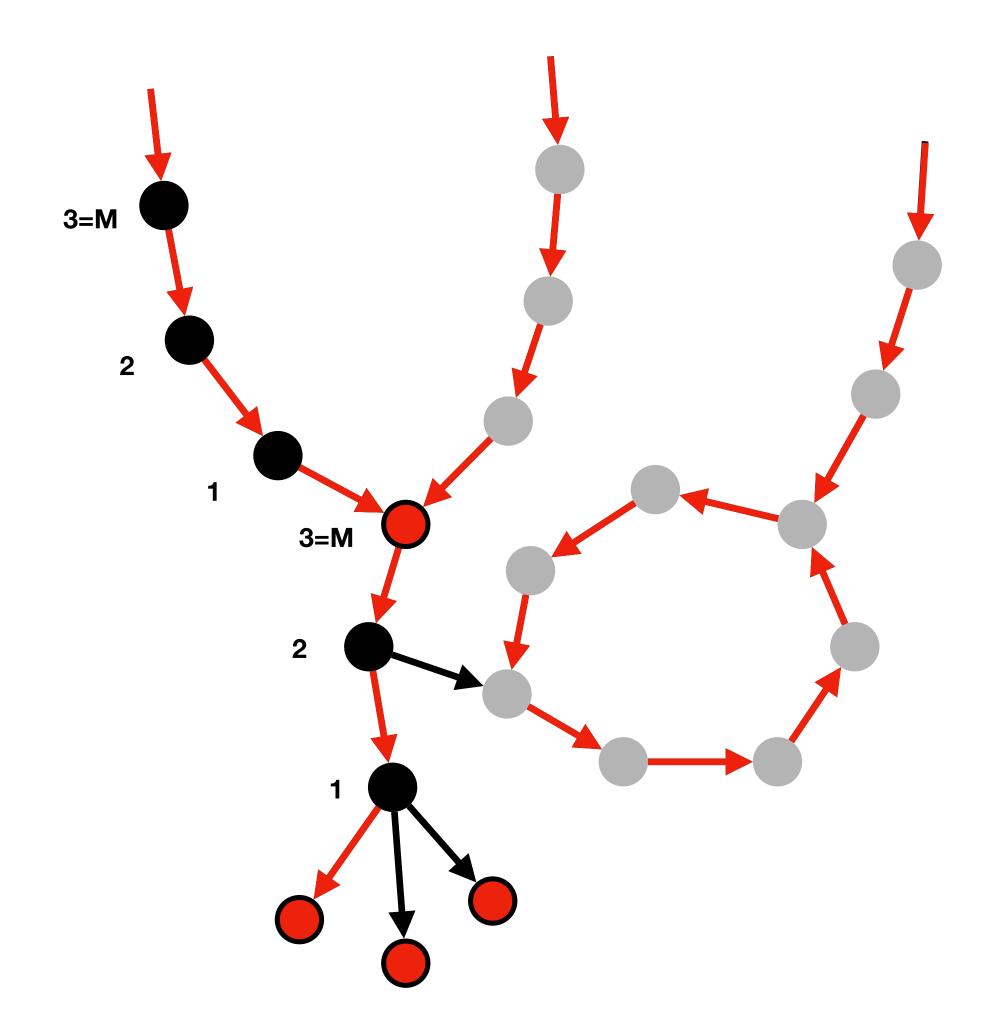
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)



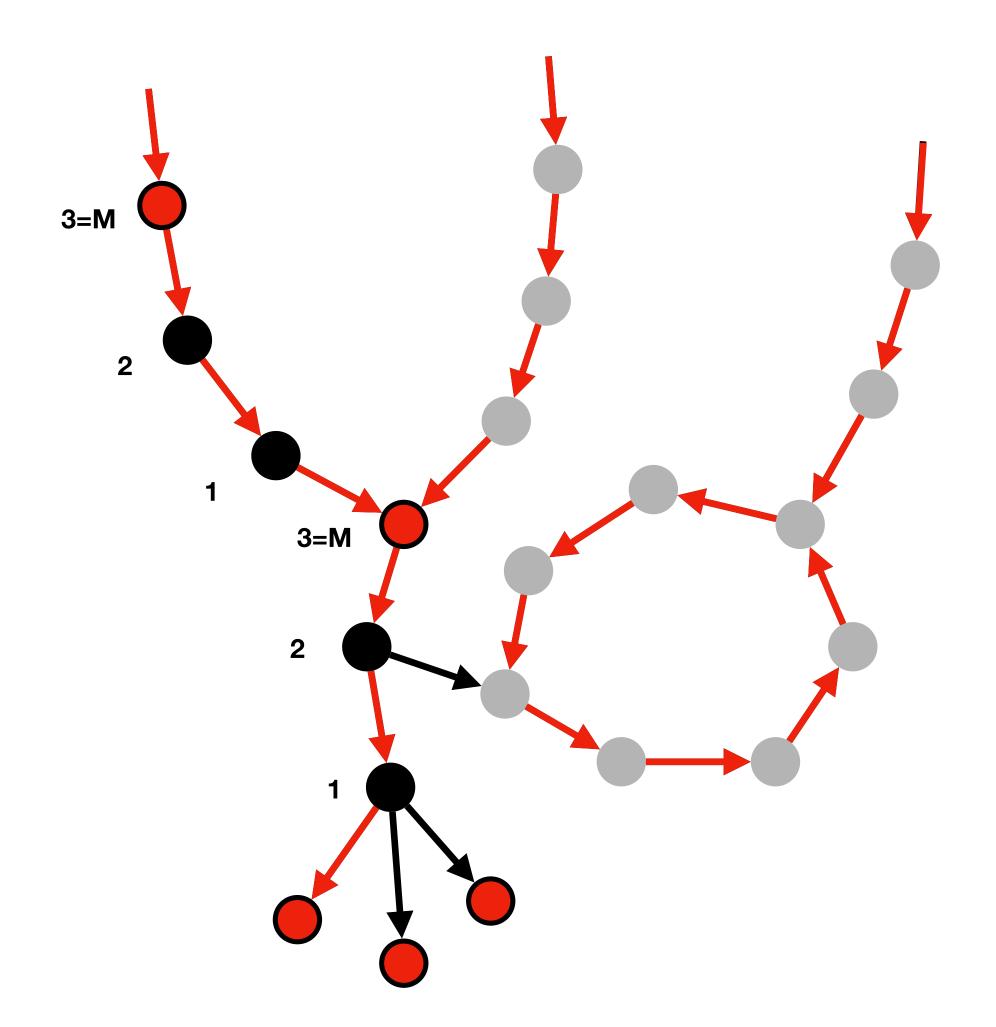
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)



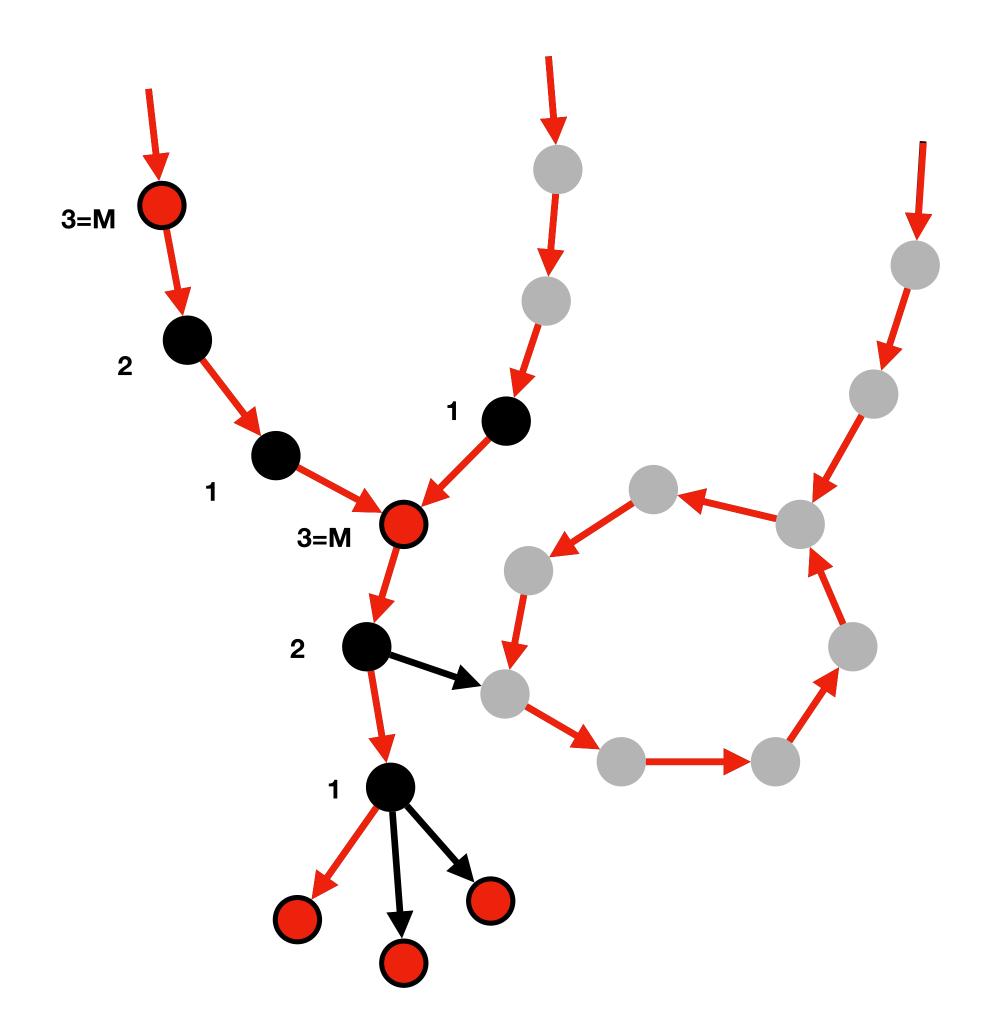
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)



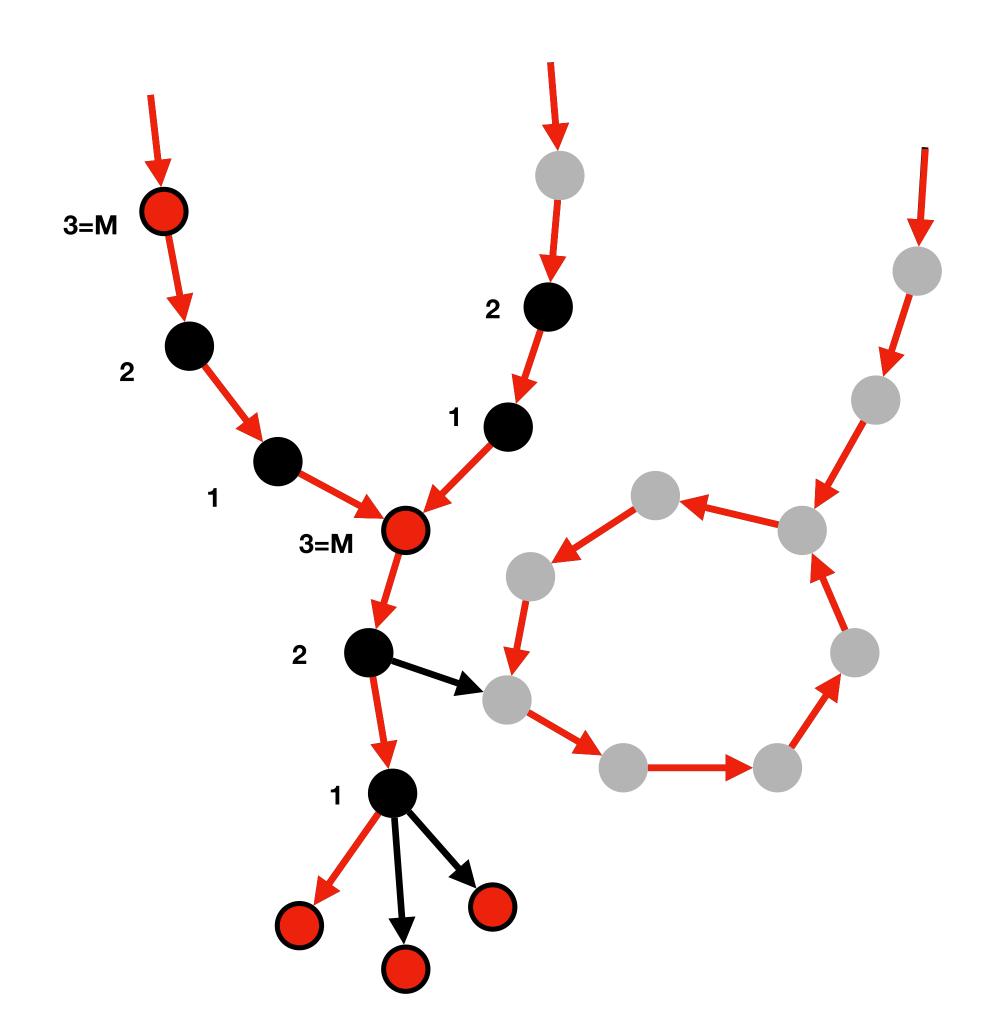
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)



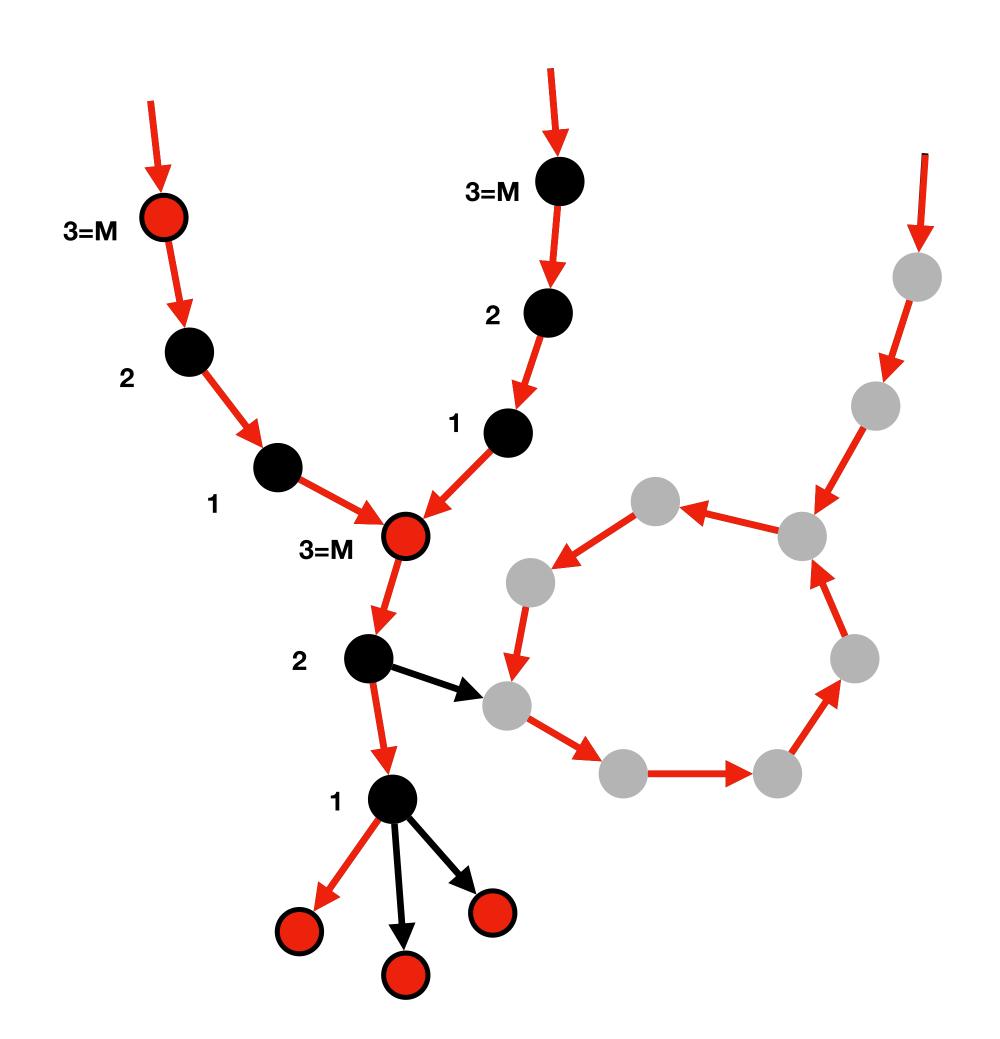
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)



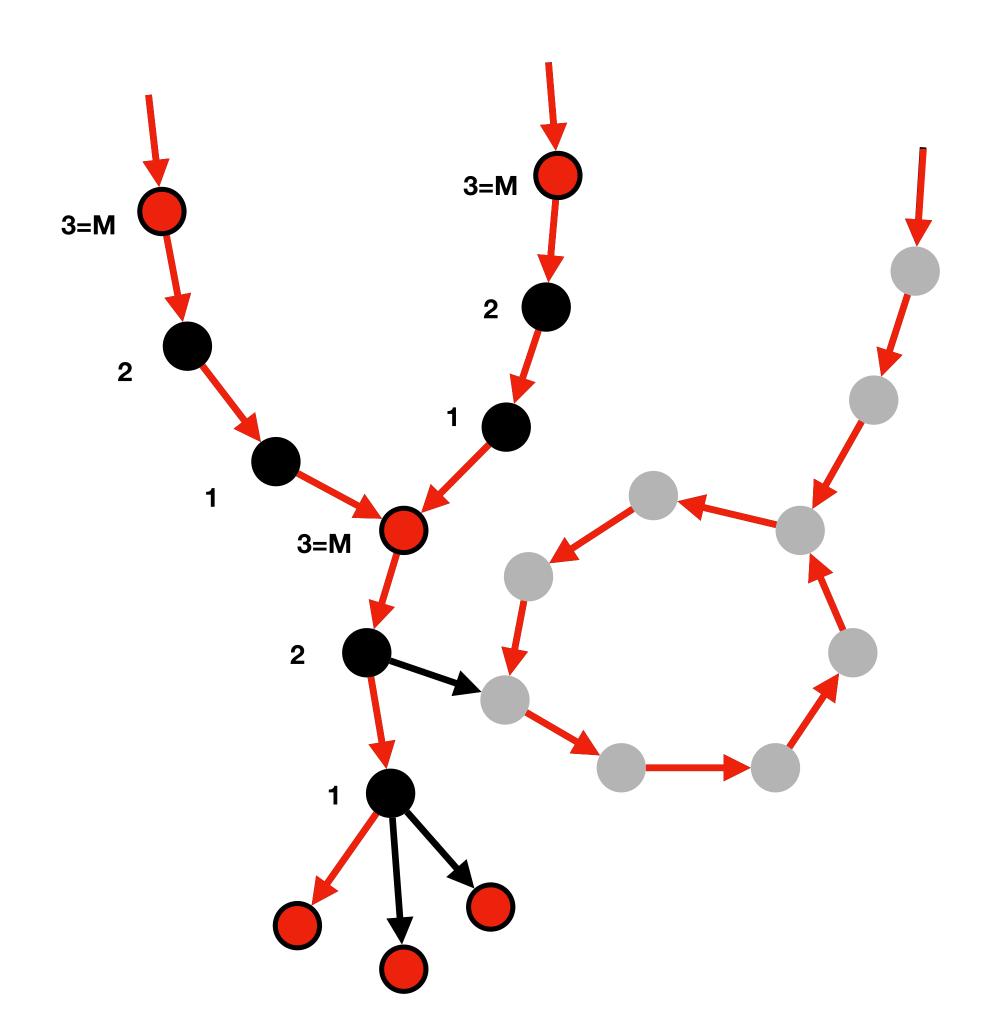
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)



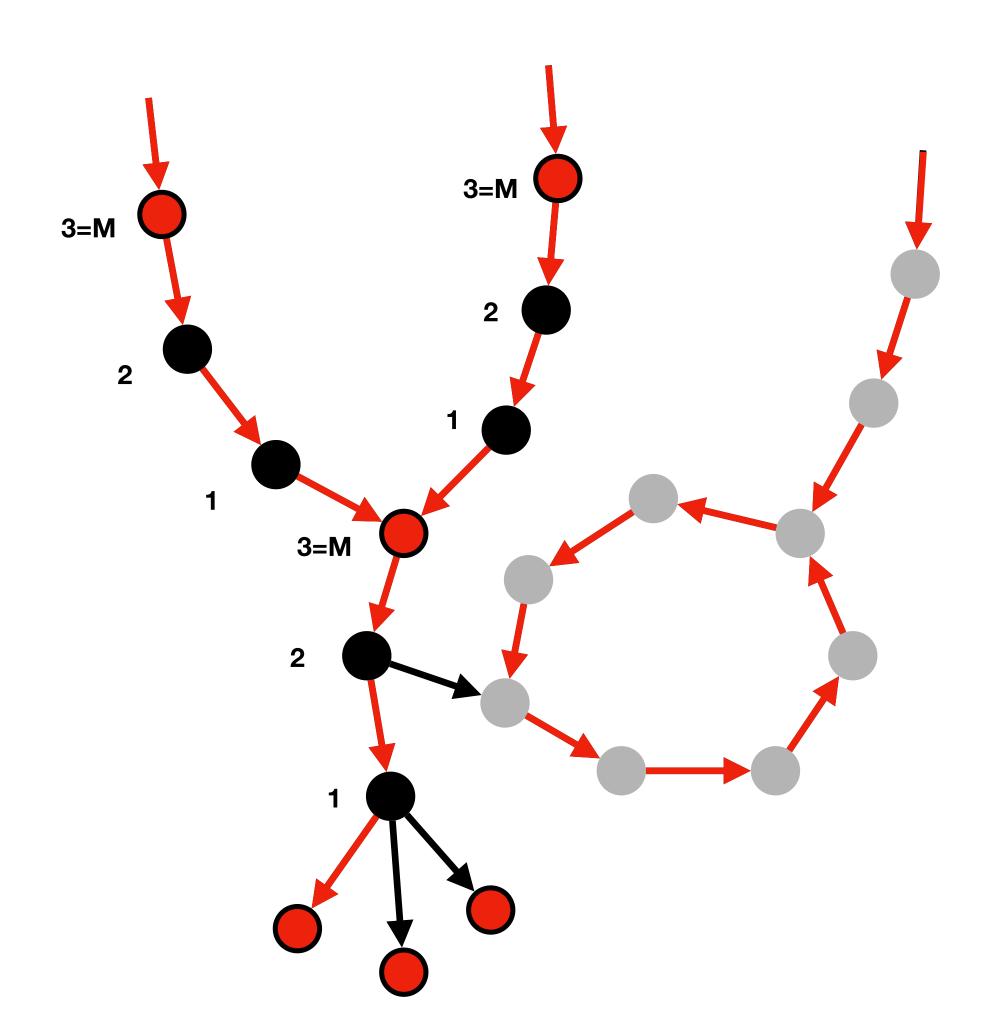
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)



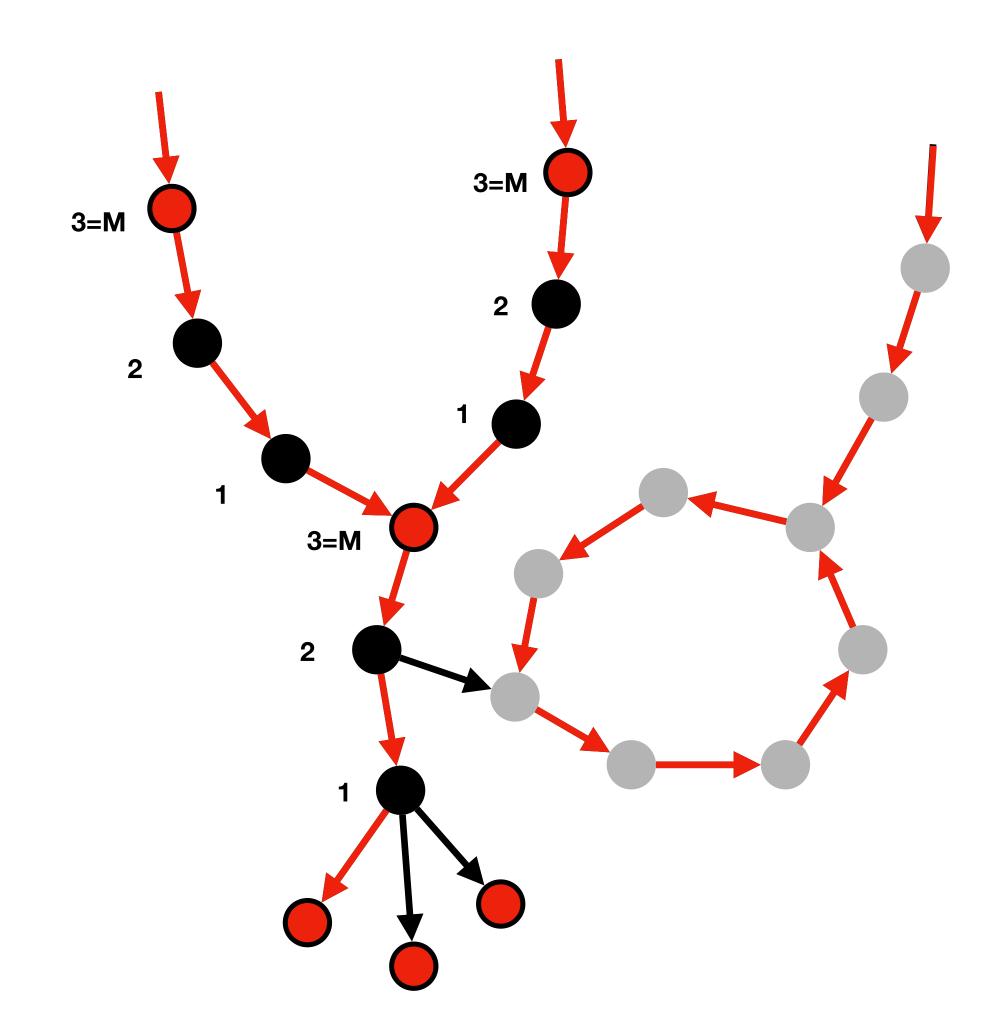
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)



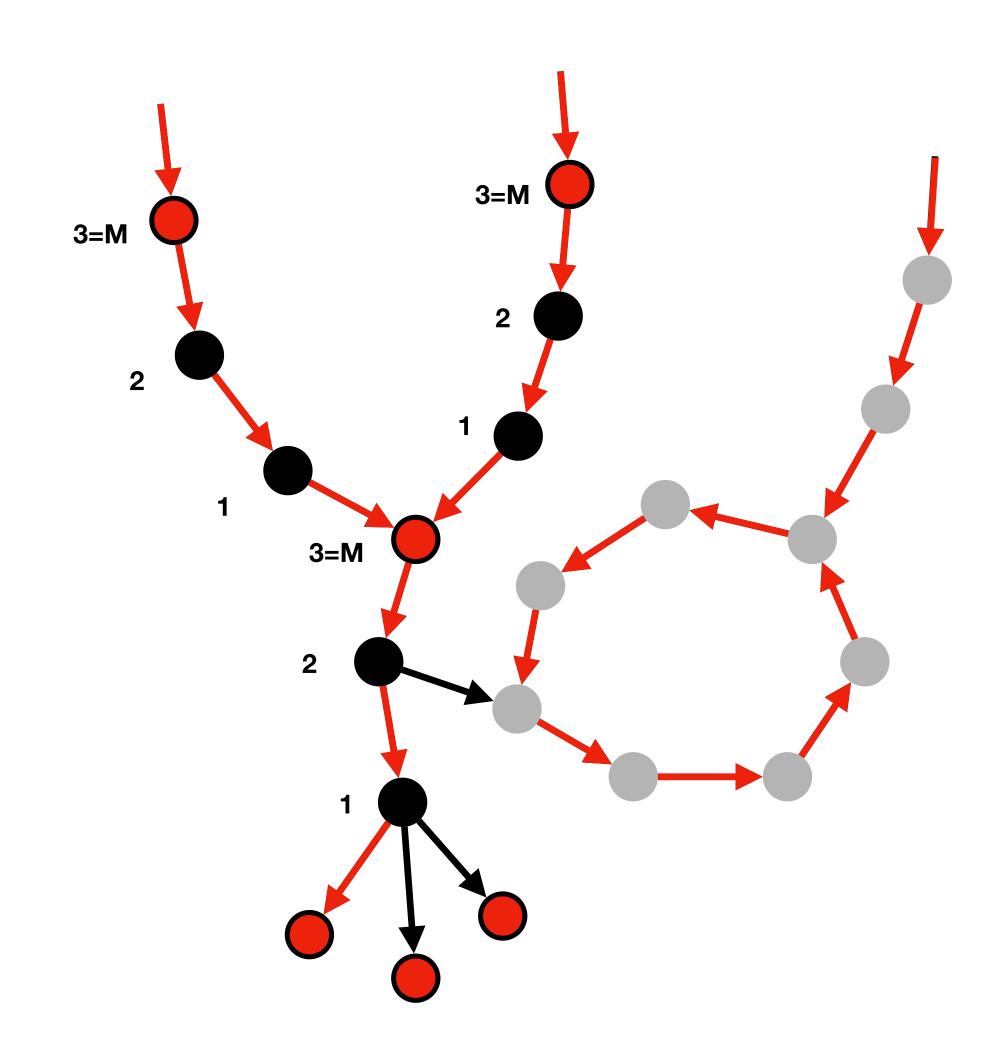
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)
 - Up to this point, there are no row-diff paths longer than ${\cal M}$



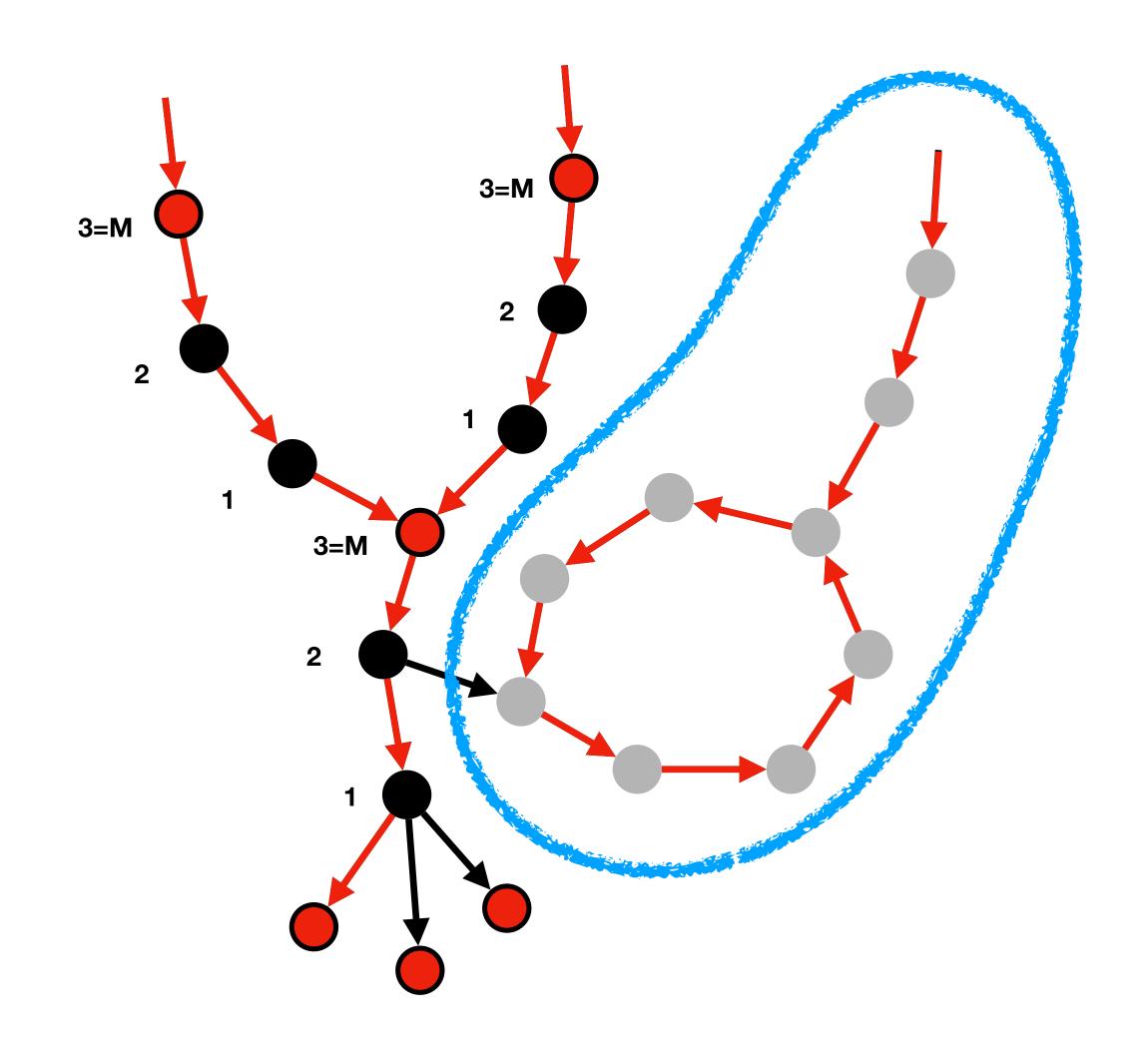
- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)
 - Up to this point, there are no row-diff paths longer than ${\cal M}$
 - In practice, this covers 98% of the nodes



- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)
 - ullet Up to this point, there are no row-diff paths longer than M
 - In practice, this covers 98% of the nodes
 - Traverses trees, hence, easy to parallelize

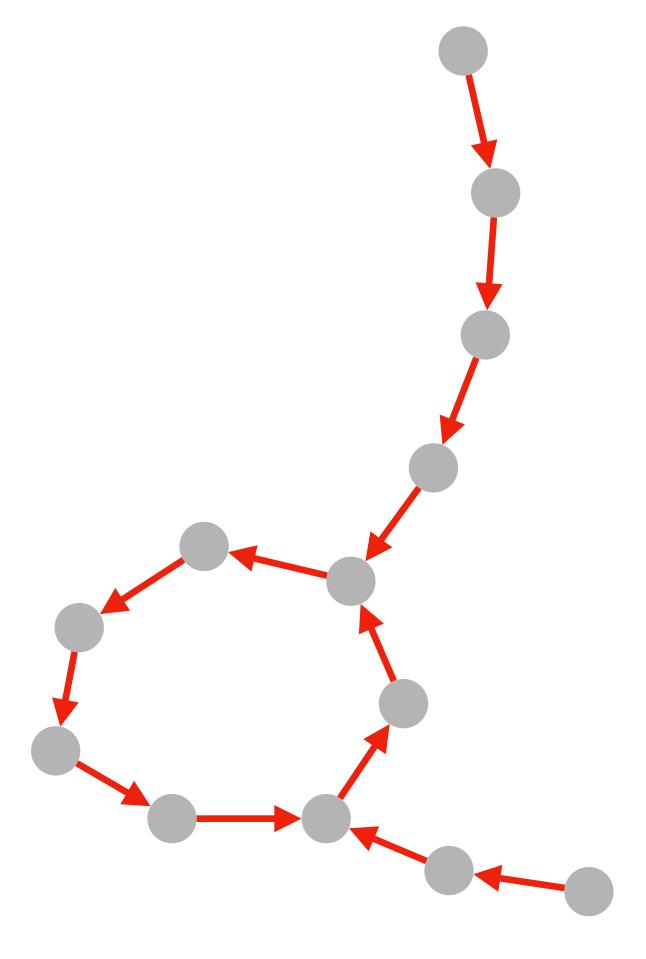


- 1. For each fork, **pick a row-diff successor** (e.g., lexicographically smallest)
- 2. Anchor all sink nodes
- 3. Start at sink nodes and traverse along row-diff paths backwards (anchor every M-th node)
 - Up to this point, there are no row-diff paths longer than ${\cal M}$
 - In practice, this covers 98% of the nodes
 - Traverses trees, hence, easy to parallelize
- 4. Now we need to process the rest
 row-diff paths that end with a cycle
 (forward traversal algorithm, see next slide...)

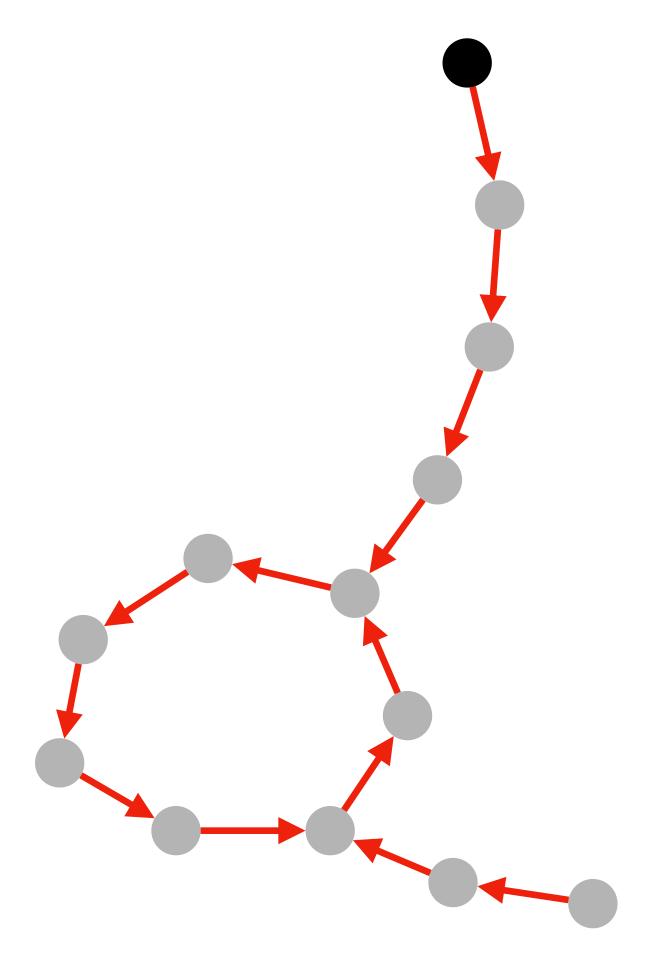


RowDiff: Anchor Assignment (part 2)

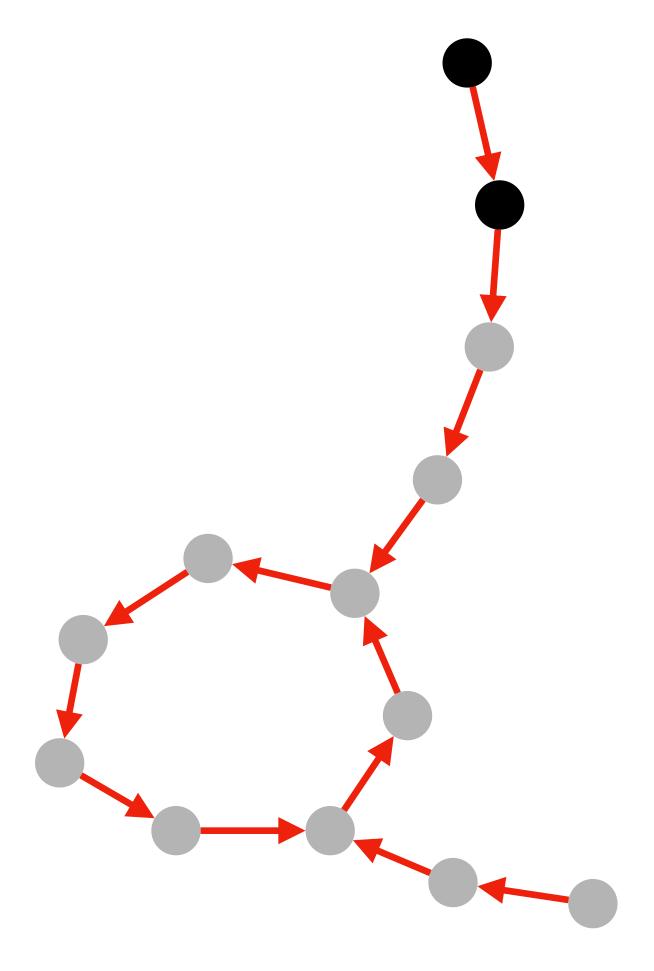
 Start traversal at unvisited nodes and traverse forward until a visited node is reached



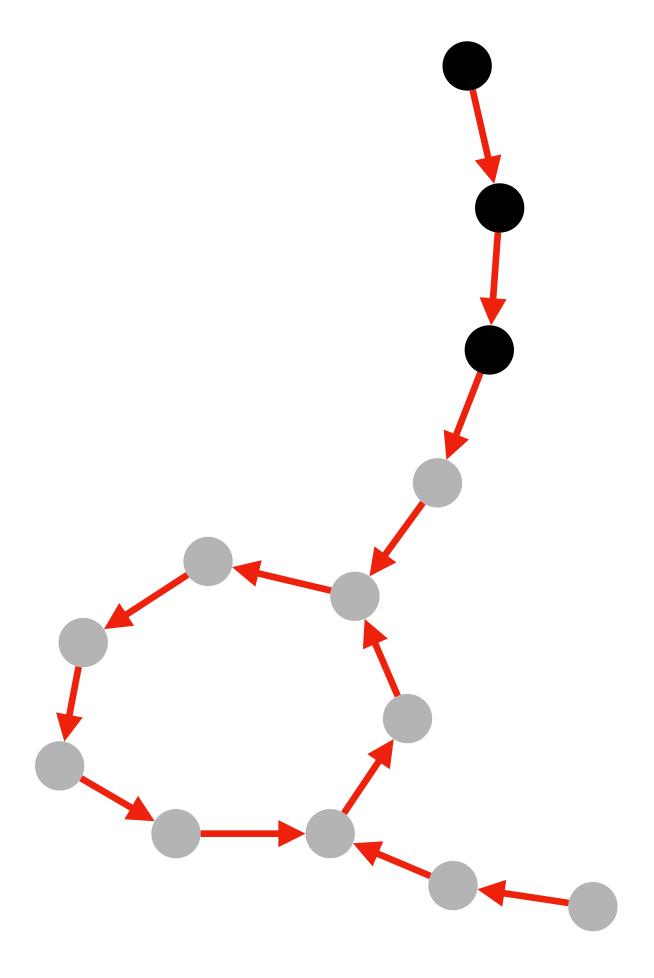
RowDiff: Anchor Assignment (part 2)



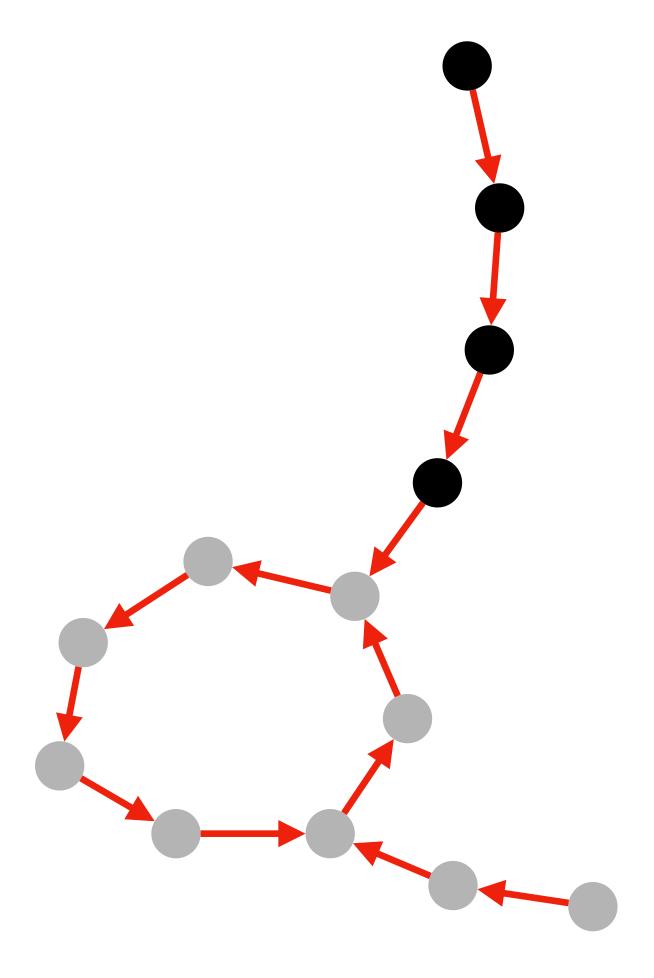
RowDiff: Anchor Assignment (part 2)



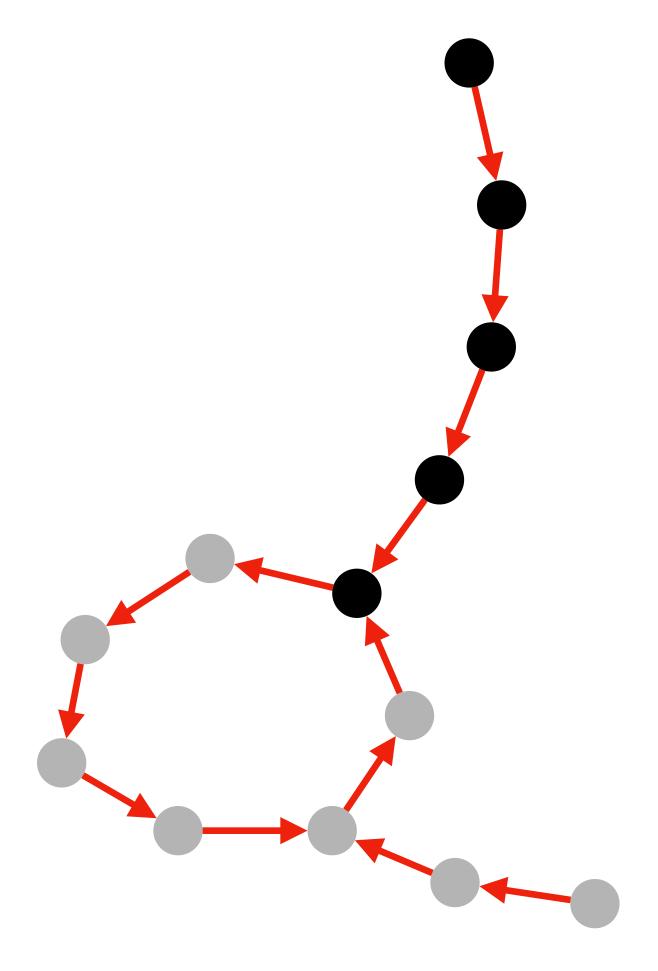
RowDiff: Anchor Assignment (part 2)



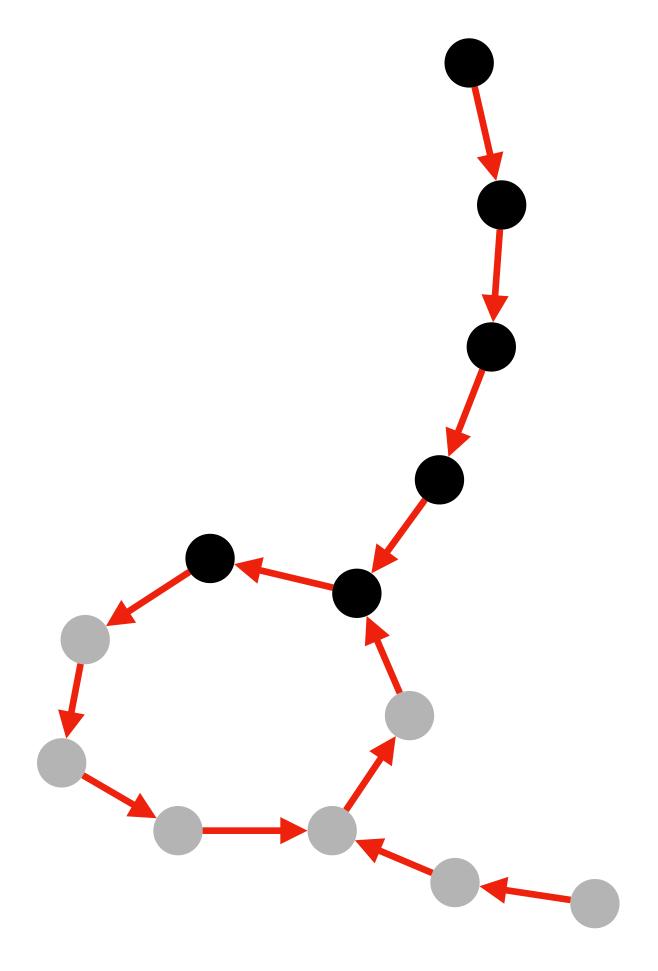
RowDiff: Anchor Assignment (part 2)



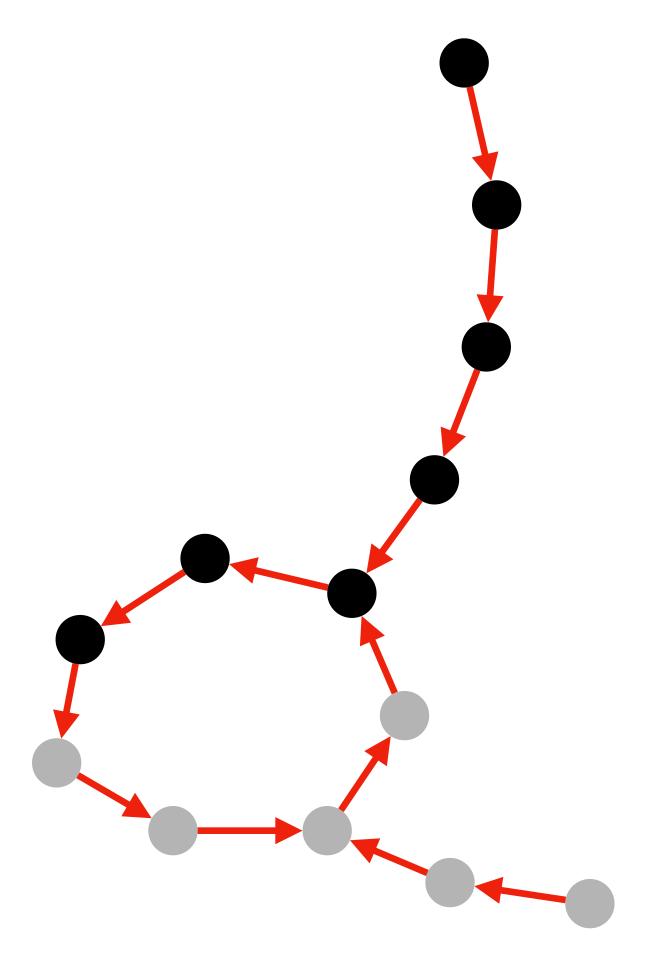
RowDiff: Anchor Assignment (part 2)



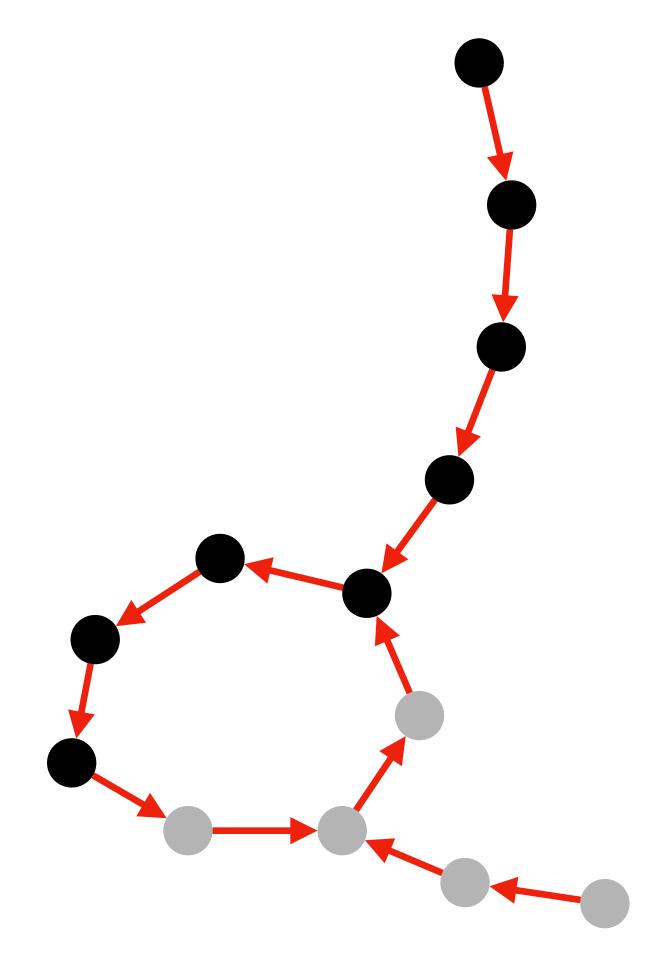
RowDiff: Anchor Assignment (part 2)



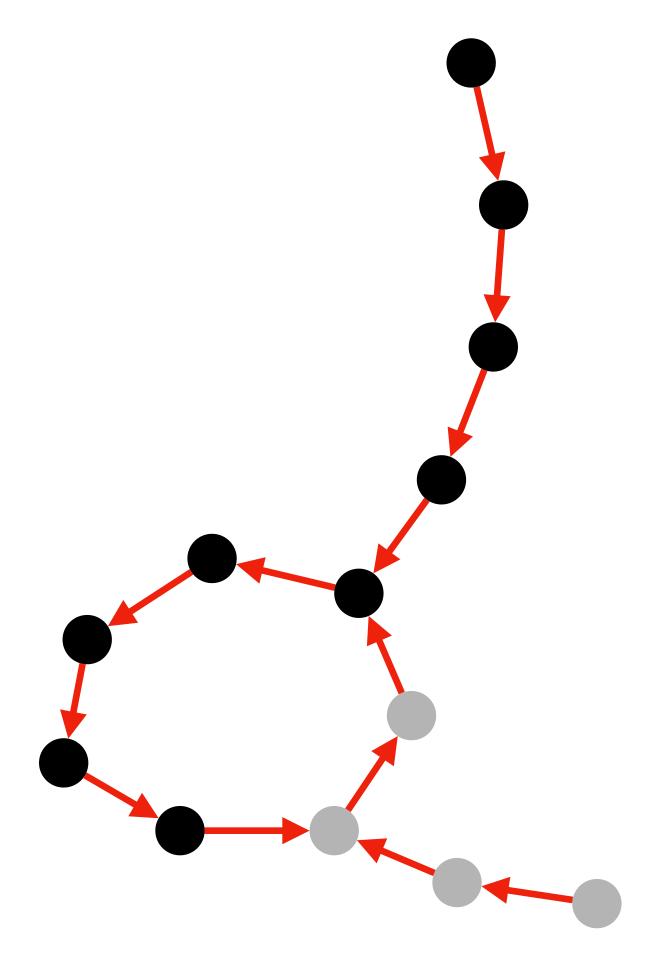
RowDiff: Anchor Assignment (part 2)



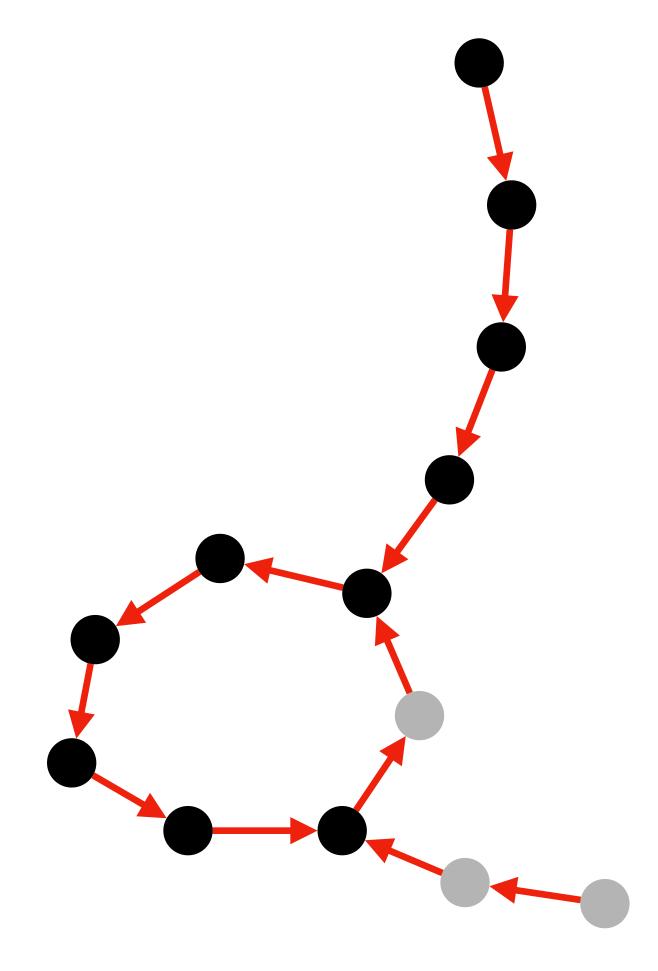
RowDiff: Anchor Assignment (part 2)



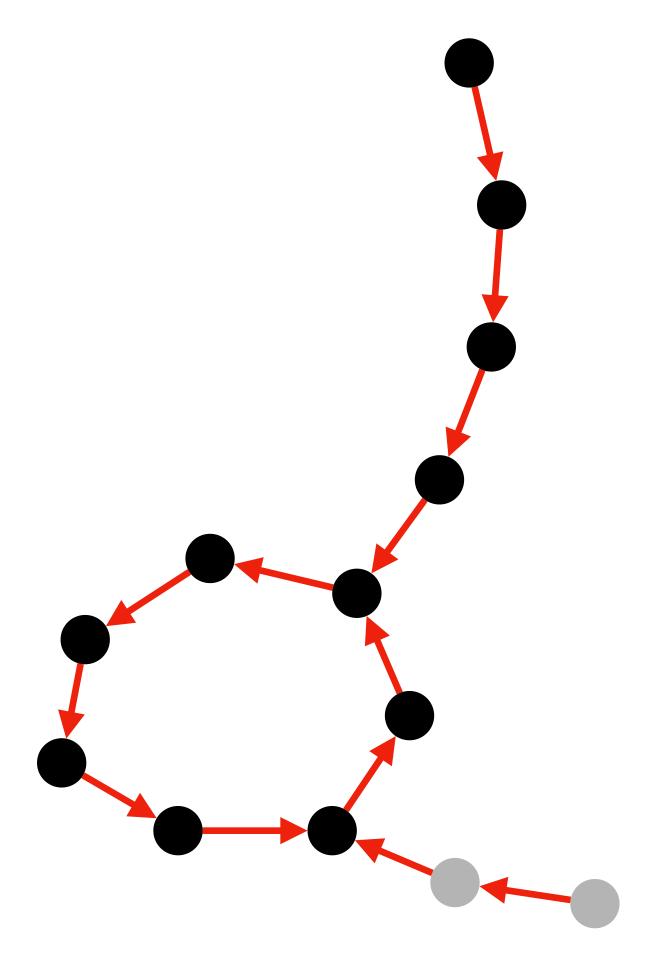
RowDiff: Anchor Assignment (part 2)



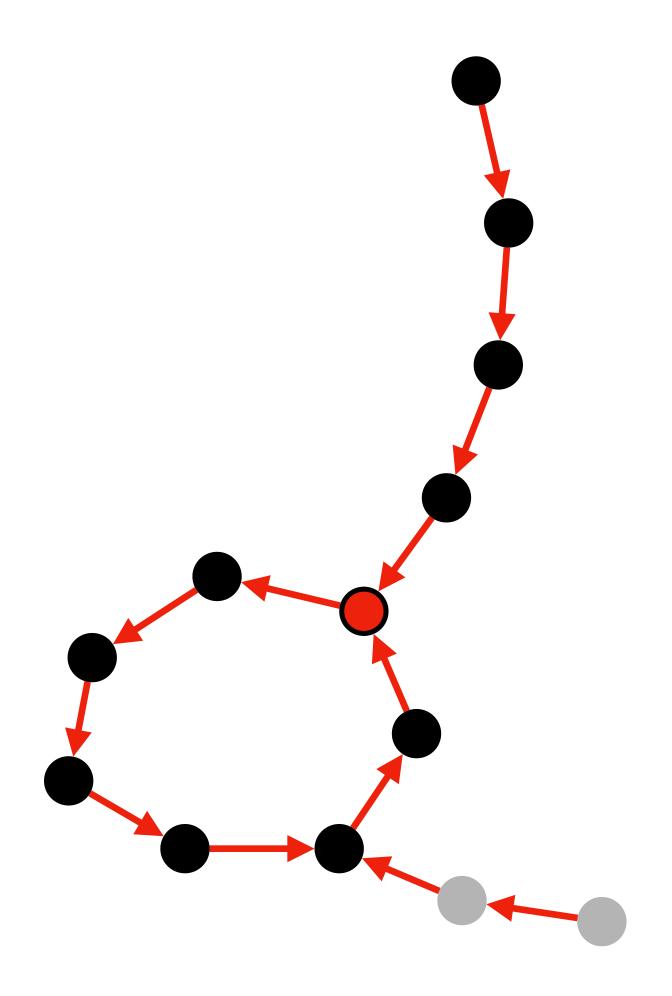
RowDiff: Anchor Assignment (part 2)



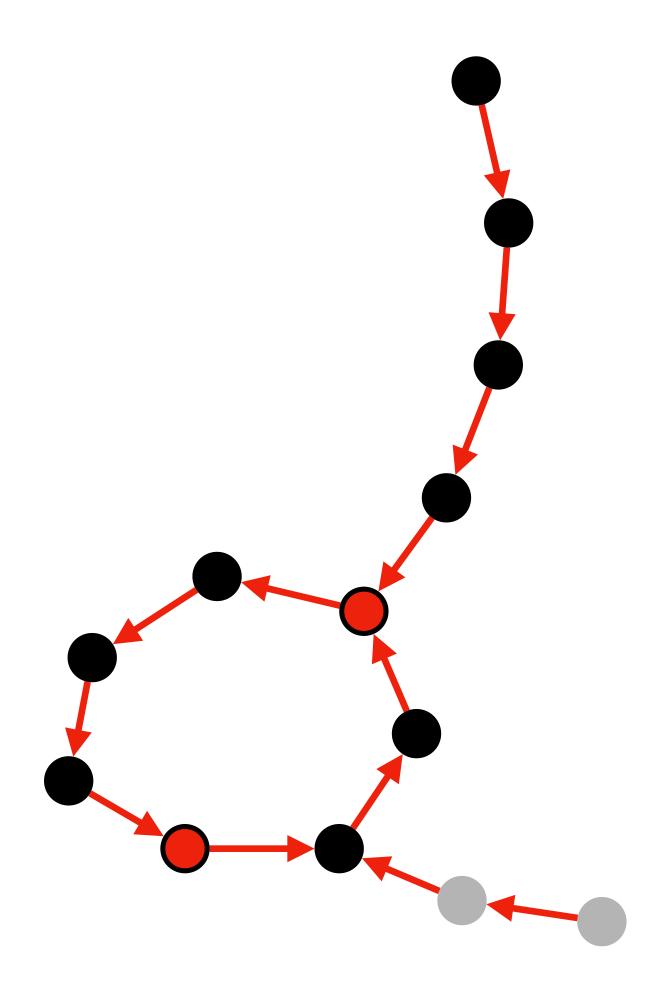
RowDiff: Anchor Assignment (part 2)



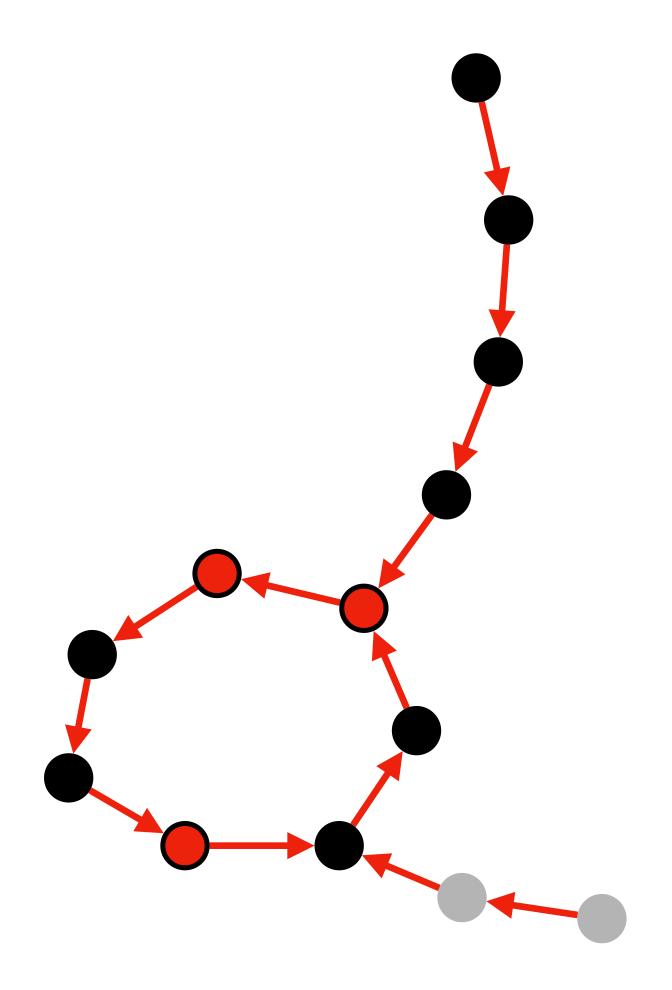
- 1) Start traversal at unvisited nodes and traverse forward until a visited node is reached
- 2) Make that node an anchor (as well as every M-th node in that path)



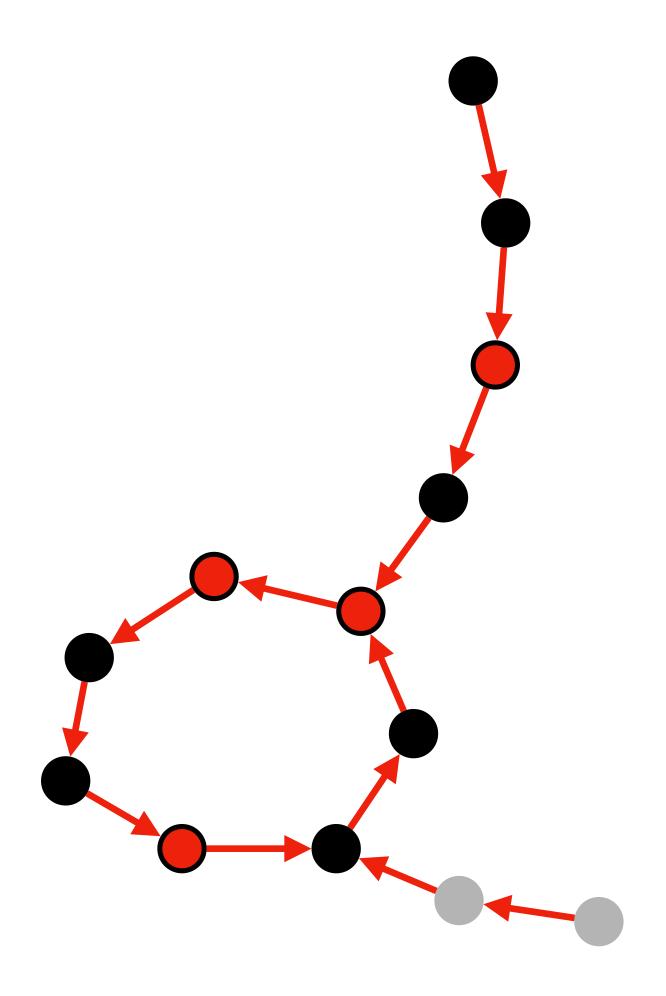
- 1) Start traversal at unvisited nodes and traverse forward until a visited node is reached
- 2) Make that node an anchor (as well as every M-th node in that path)



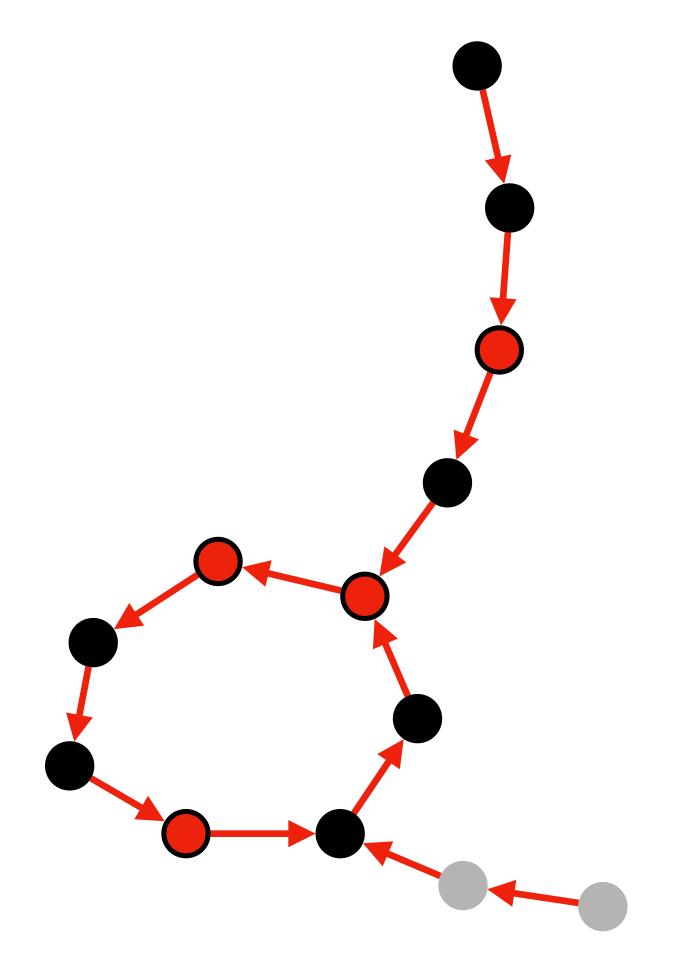
- 1) Start traversal at unvisited nodes and traverse forward until a visited node is reached
- 2) Make that node an anchor (as well as every M-th node in that path)



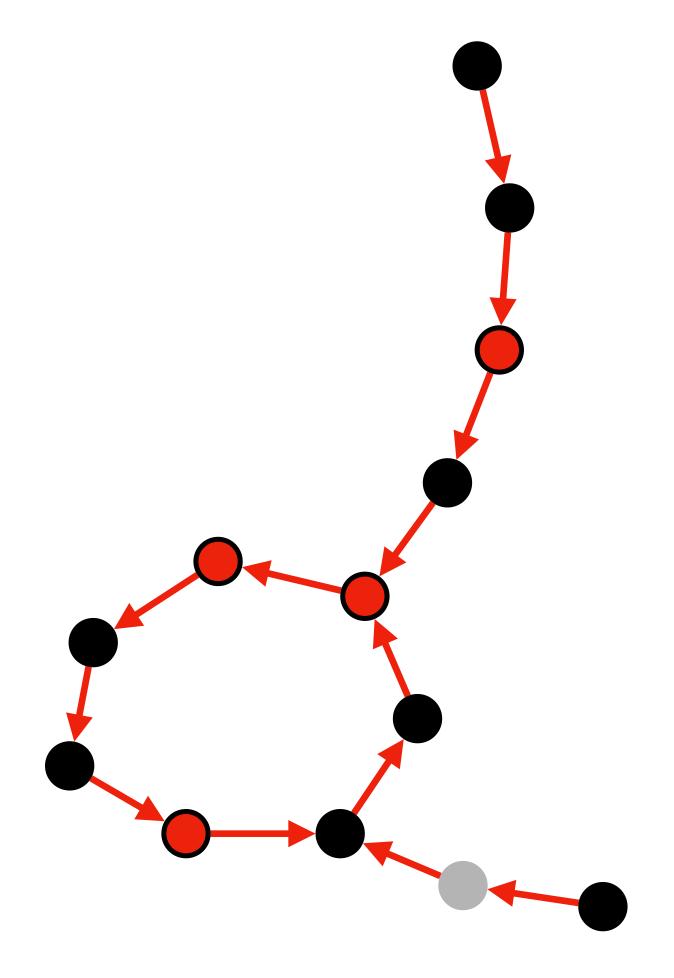
- 1) Start traversal at unvisited nodes and traverse forward until a visited node is reached
- 2) Make that node an anchor (as well as every M-th node in that path)



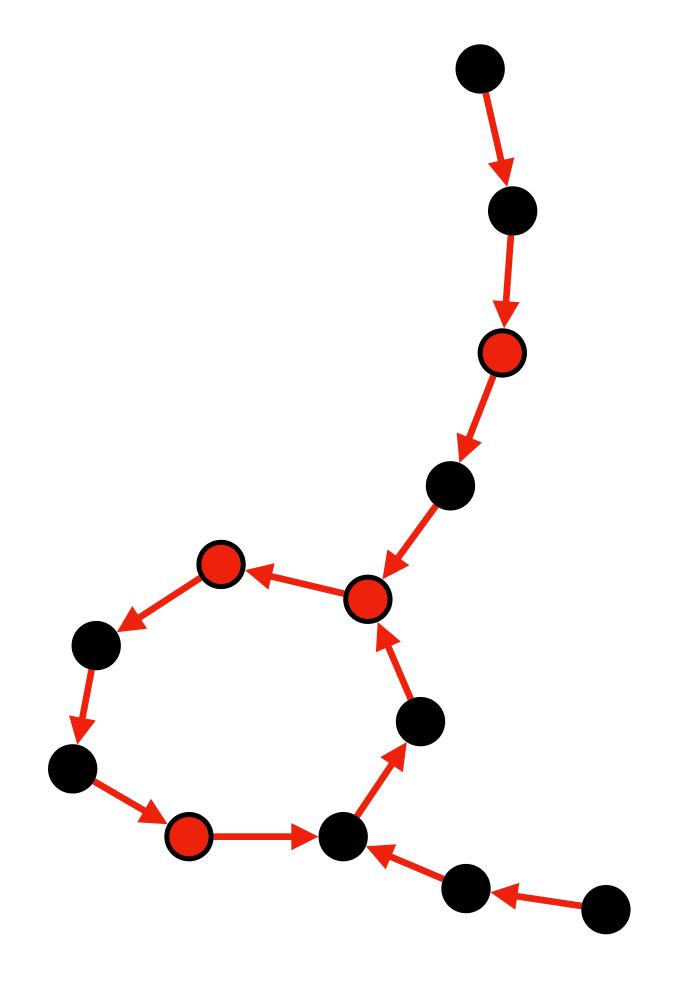
- 1) Start traversal at unvisited nodes and traverse forward until a visited node is reached
- 2) Make that node an anchor (as well as every M-th node in that path)
- 3) Repeat until all nodes are visited



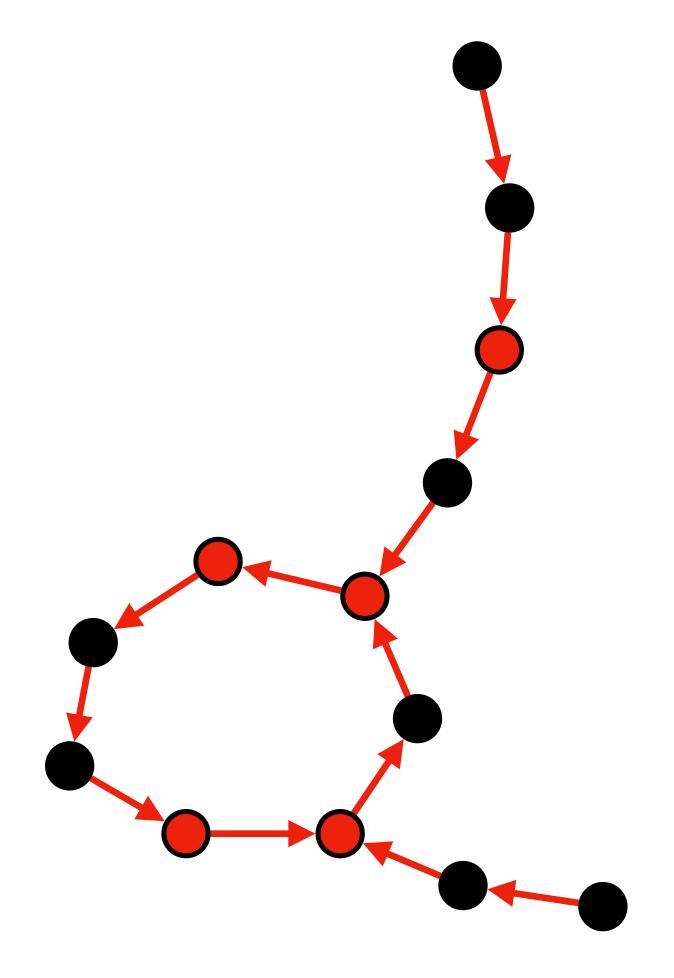
- 1) Start traversal at unvisited nodes and traverse forward until a visited node is reached
- 2) Make that node an anchor (as well as every M-th node in that path)
- 3) Repeat until all nodes are visited



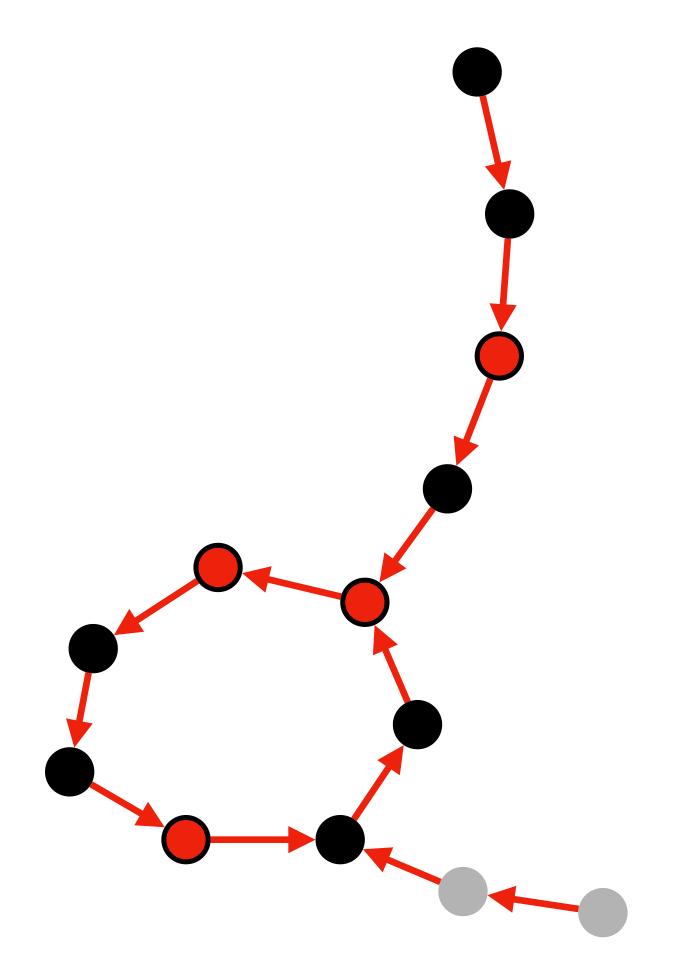
- Start traversal at unvisited nodes and traverse forward until a visited node is reached
- 2) Make that node an anchor (as well as every M-th node in that path)
- 3) Repeat until all nodes are visited



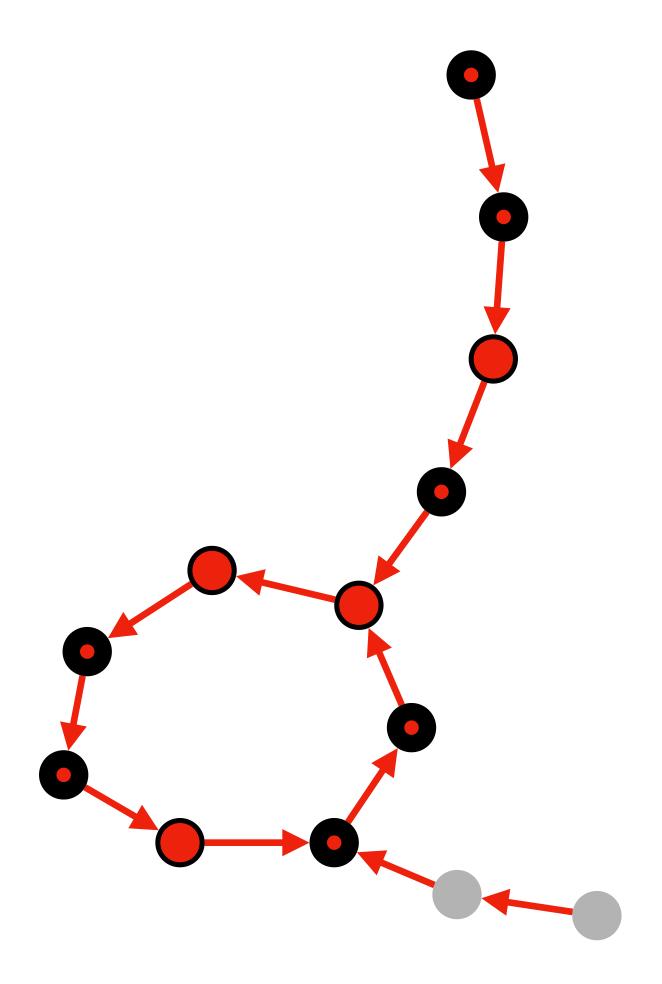
- 1) Start traversal at unvisited nodes and traverse forward until a visited node is reached
- 2) Make that node an anchor (as well as every M-th node in that path)
- 3) Repeat until all nodes are visited



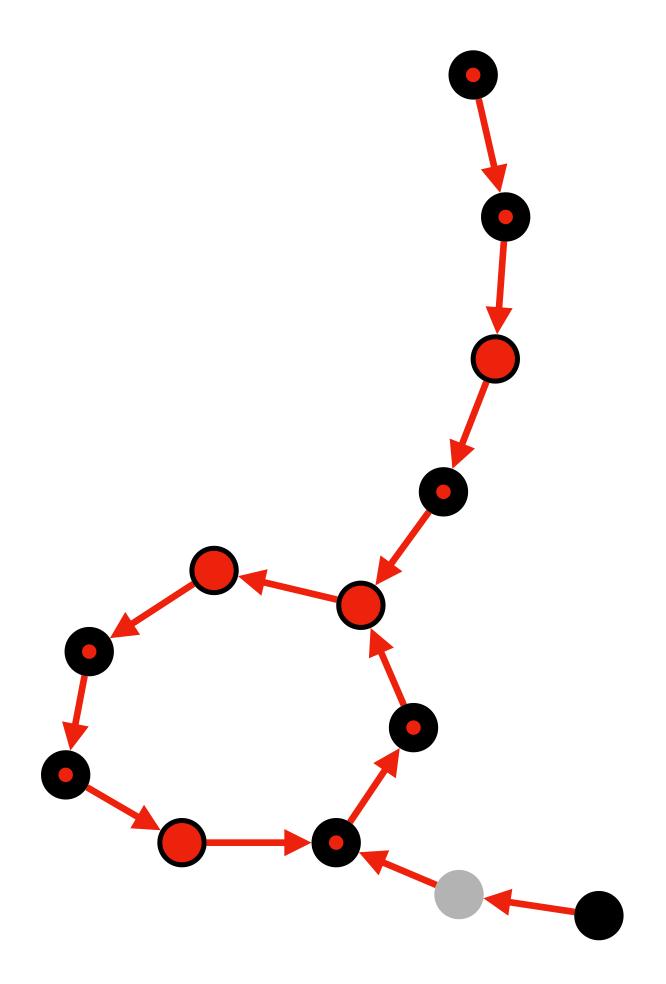
- 1) Start traversal at unvisited nodes and traverse forward until a visited node is reached
- 2) Make that node an anchor (as well as every M-th node in that path)
- 3) Repeat until all nodes are visited



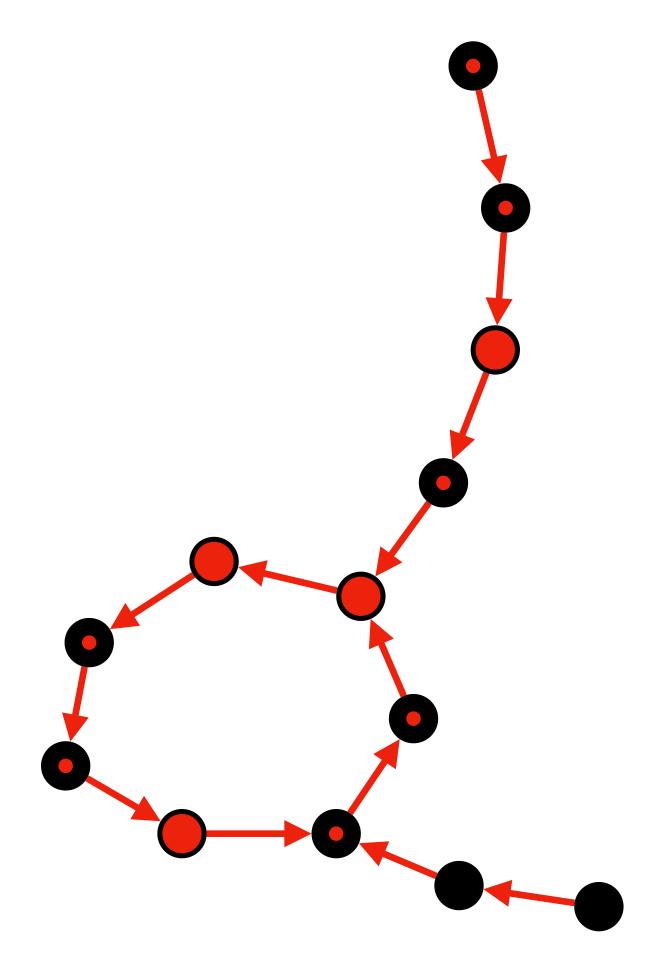
- 1) Start traversal at unvisited nodes and traverse forward until a visited node is reached
- 2) Make that node an anchor (as well as every M-th node in that path)
- 3) Repeat until all nodes are visited



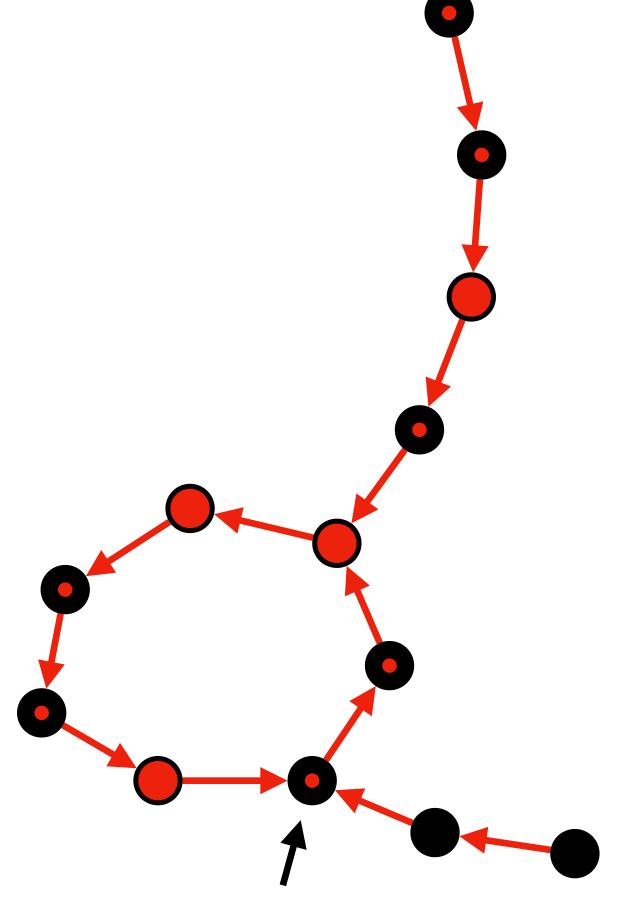
- 1) Start traversal at unvisited nodes and traverse forward until a visited node is reached
- 2) Make that node an anchor (as well as every M-th node in that path)
- 3) Repeat until all nodes are visited



- 1) Start traversal at unvisited nodes and traverse forward until a visited node is reached
- 2) Make that node an anchor (as well as every M-th node in that path)
- 3) Repeat until all nodes are visited



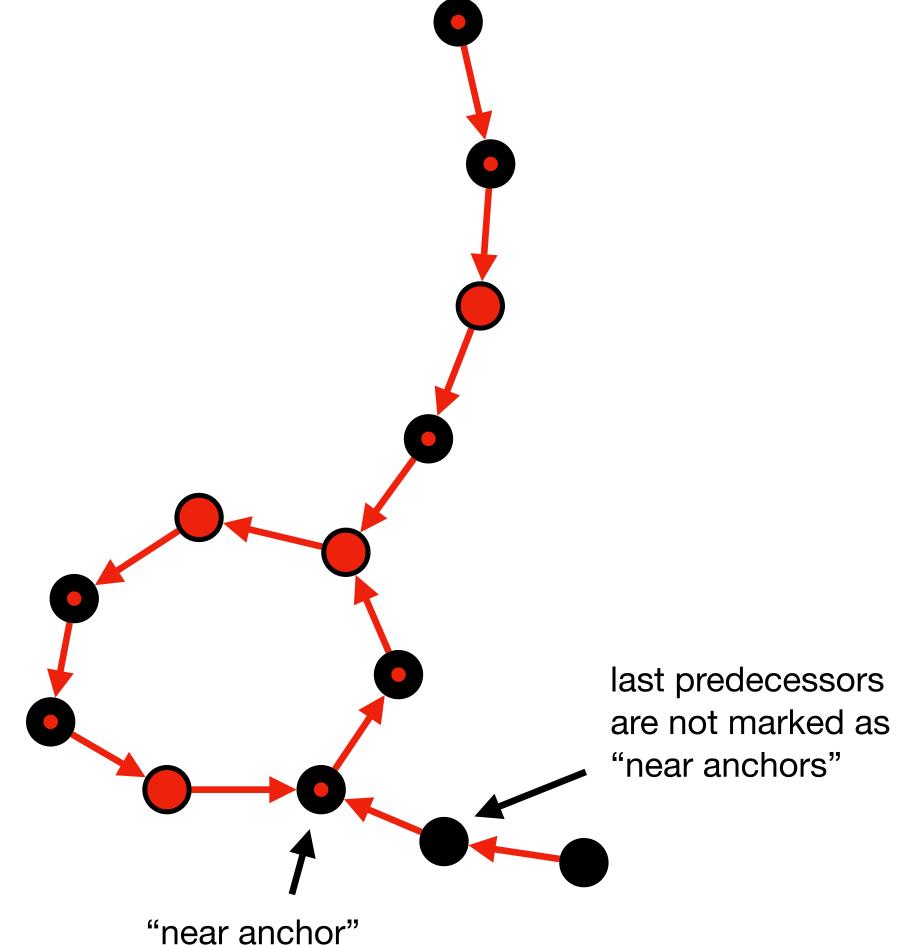
- 1) Start traversal at unvisited nodes and traverse forward until a visited node is reached
- 2) Make that node an anchor (as well as every M-th node in that path)
- 3) Repeat until all nodes are visited



"near anchor"
thus, new anchor isn't created

RowDiff: Anchor Assignment (part 2)

- Start traversal at unvisited nodes and traverse forward until a visited node is reached
- 2) Make that node an anchor (as well as every M-th node in that path)
- 3) Repeat until all nodes are visited

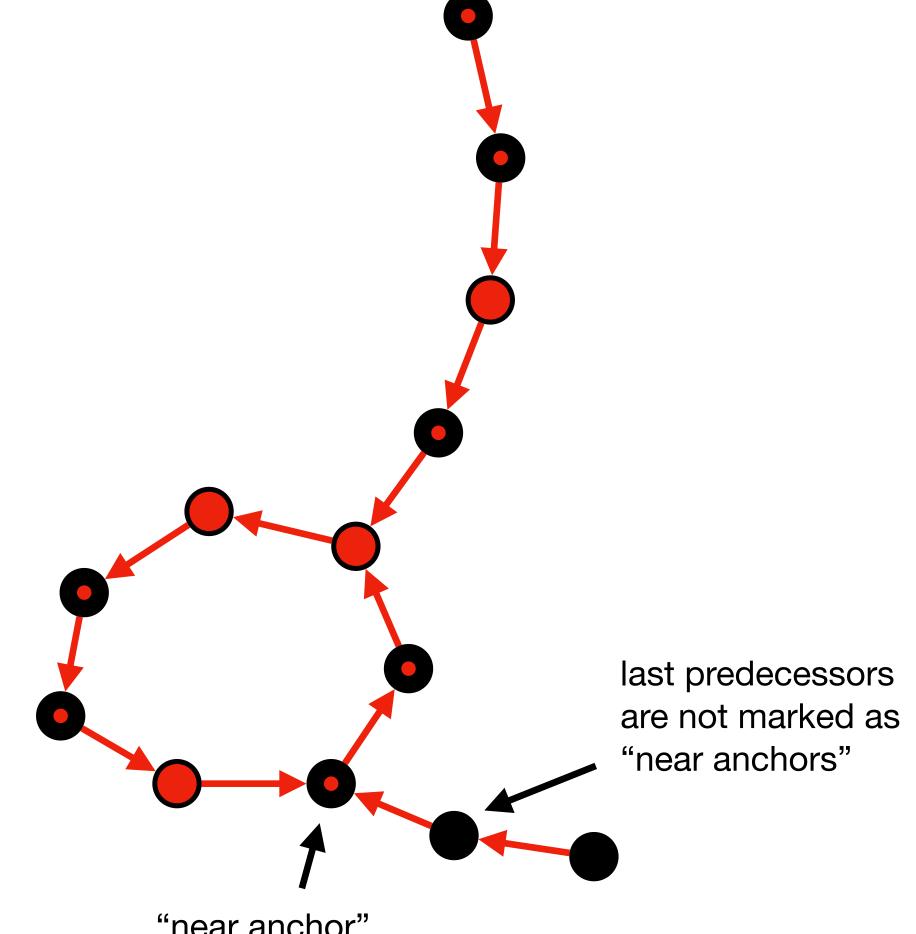


"near anchor" thus, new anchor isn't created

RowDiff: Anchor Assignment (part 2)

- Start traversal at unvisited nodes and traverse forward until a visited node is reached
- 2) Make that node an anchor (as well as every M-th node in that path)
- 3) Repeat until all nodes are visited

No row-diff paths are longer than 2M

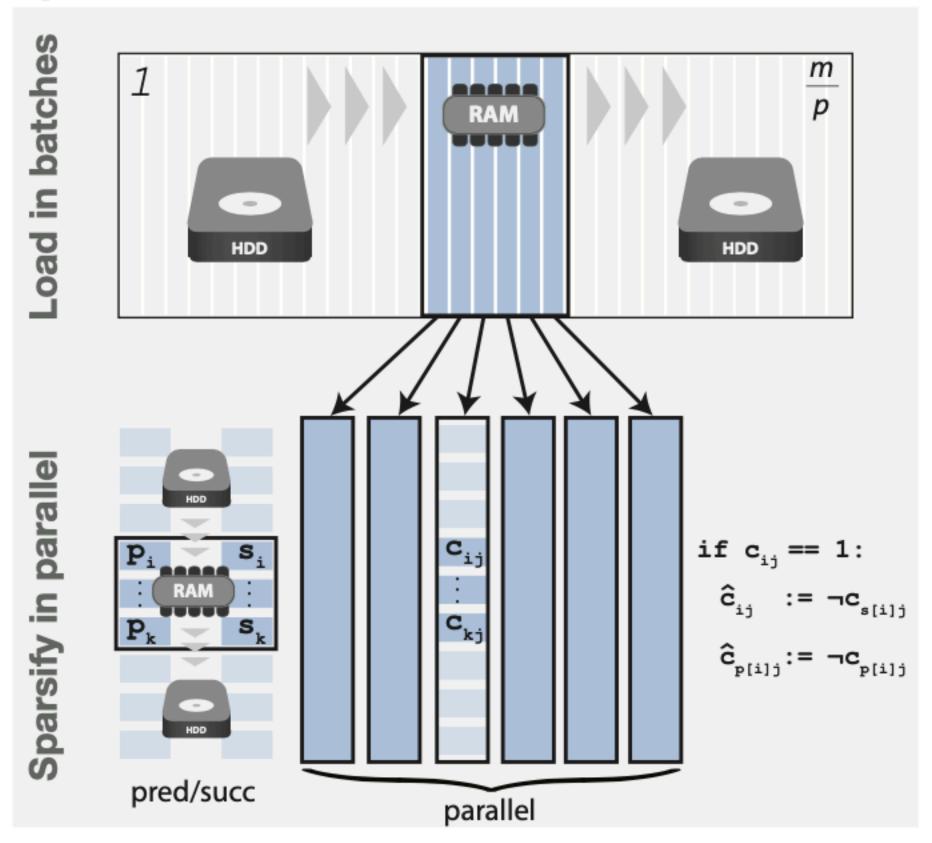


"near anchor"
thus, new anchor isn't created

RowDiff: Construction Algorithm

- 1. Precompute row-diff successors and predecessors for each node (so we don't need to keep the graph in memory anymore)
- 2. Load next batch of columns from disk
 - Sequentially load blocks of succ/pred arrays and transform the columns at those positions
 - The columns from the batch are transformed in parallel
- 3. Go to 2. until all columns are transformed
 - The batches can be distributed to multiple machines and transformed in parallel

Sparsification overview

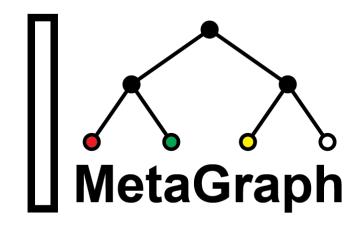


RowDiff Transform: Implementation

Repository with code and resources: github.com/ratschlab/row_diff

RowDiff is implemented within the MetaGraph framework

- Succinct graph representations (based on the BOSS table)
- Graph annotation representations (e.g., Multi-BRWT)
- Hybrid bit vector representations



Special thanks to sdsl-lite (Succinct Data Structure Library)

- Compressed and packed bitmaps
- Bitmaps with disk swap (sdsl::int_vector_buffer)

Data sets used in experiments

RNA-Seq runs

- 10,000 RNA-Seq SRA runs [Almodaresi et al., 2019]
- k = 23 or 31
- More complex (more bifurcation nodes)

RefSeq genomes

- RefSeq release 97, Fungi genomes
- k = 31
- Less complex (mostly linear paths)

Compression ratio vs k-mer size

Compression ratio on a random subset of 1570 RefSeq (Fungi) annotation columns.

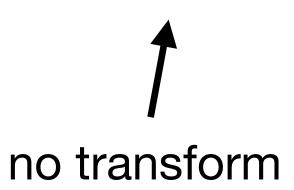
k-mer size	Average out-degree	Compression ratio $ A / A^* $
15	1.98	1.30
17	1.10	4.79
19	1.01	18.89
23	1.003	31.66
31	1.0017	34.53

- The sparser the graph, the higher the compression ratio
- k=23 makes the graph sufficiently sparse to enable a good compression

Size vs. maximum row-diff path length ${\cal M}$

Annotation size (in GB) vs maximum RowDiff path length M for RNA-Seq (k=23, 31) and Refseq Fungi (k=31).

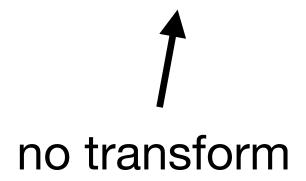
Dataset	M=0	M=10	M=25	M=50	M=75	M=100
RNA-Seq (k=23)	214	125.1	119.8	118.3	118.0	117.8
RNA-Seq (k=31)	151	70.7	64.9	63.2	62.6	62.2
RefSeq (Fungi)	11.2	1.52	0.713	0.419	0.317	0.265



Size vs. maximum row-diff path length ${\cal M}$

Annotation size (in GB) vs maximum RowDiff path length M for RNA-Seq (k=23, 31) and Refseq Fungi (k=31).

Dataset	M=0	M=10	M=25	M=50	M=75	M=100
RNA-Seq (k=23)	214	125.1	119.8	118.3	118.0	117.8
RNA-Seq (k=31)	151	70.7	64.9	63.2	62.6	62.2
RefSeq (Fungi)	11.2	1.52	0.713	0.419	0.317	0.265

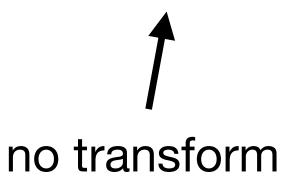


ullet Setting larger M increases the compression ratio

Size vs. maximum row-diff path length ${\cal M}$

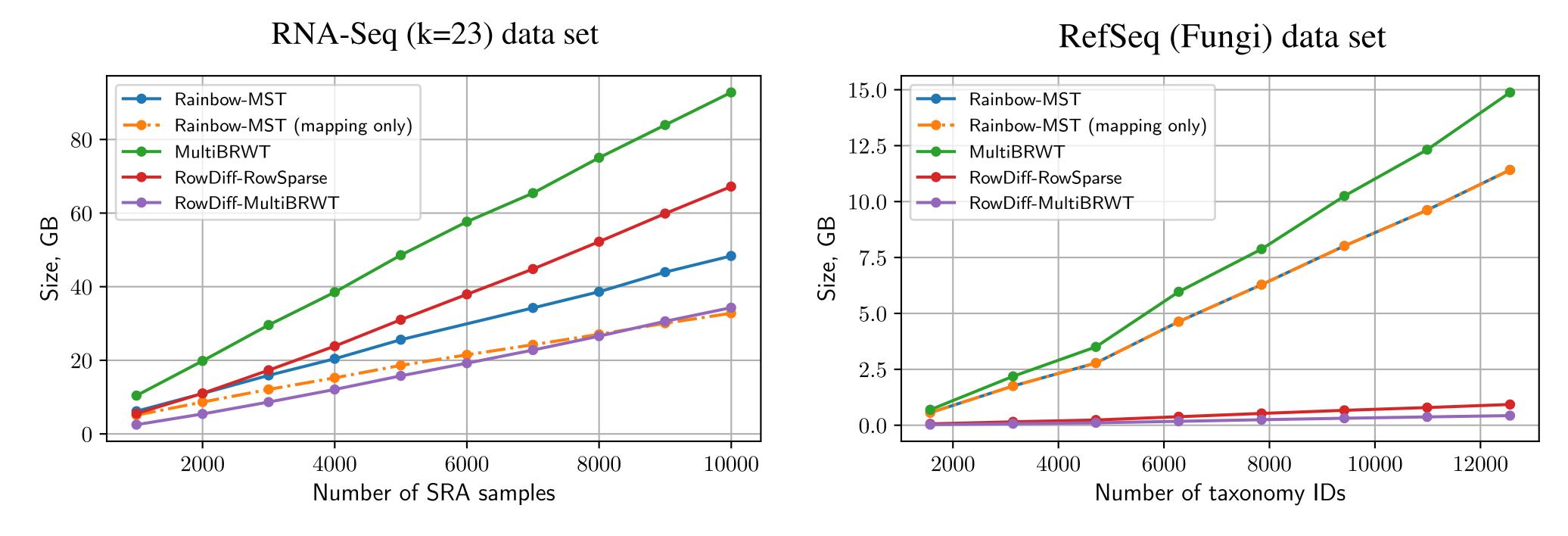
Annotation size (in GB) vs maximum RowDiff path length M for RNA-Seq (k=23, 31) and Refseq Fungi (k=31).

Dataset	M=0	M=10	M=25	M=50	M=75	M=100
RNA-Seq (k=23)	214	125.1	119.8	118.3	118.0	117.8
RNA-Seq (k=31)	151	70.7	64.9	63.2	62.6	62.2
RefSeq (Fungi)	11.2	1.52	0.713	0.419	0.317	0.265



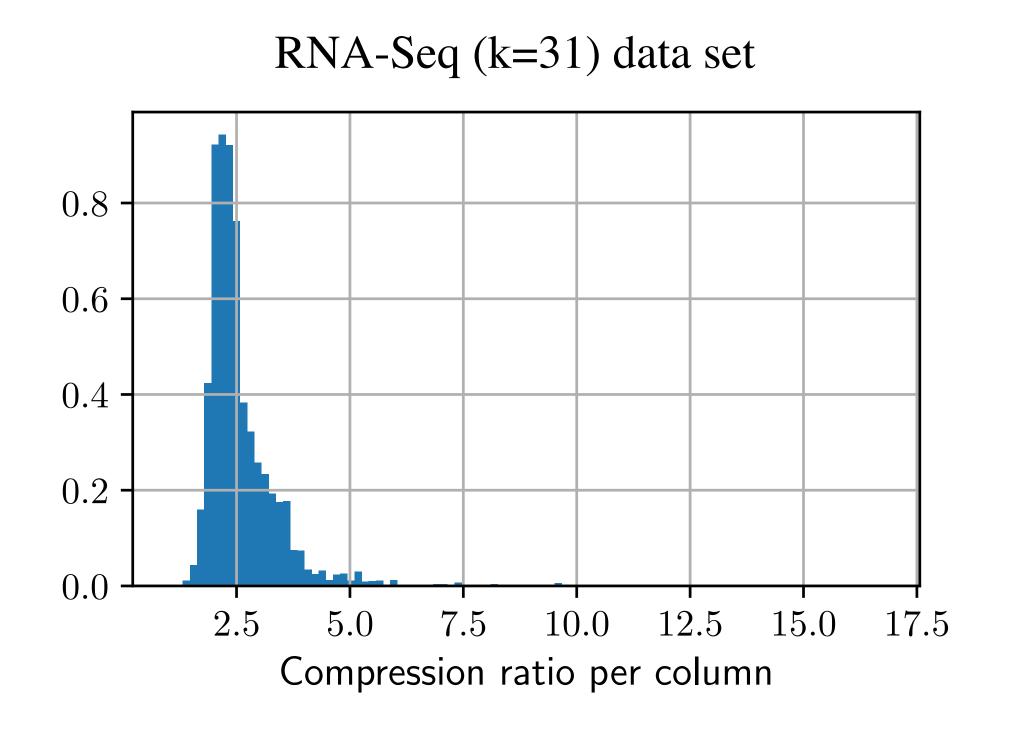
- ullet Setting larger M increases the compression ratio
- M > 50 enables a very good compression ratio

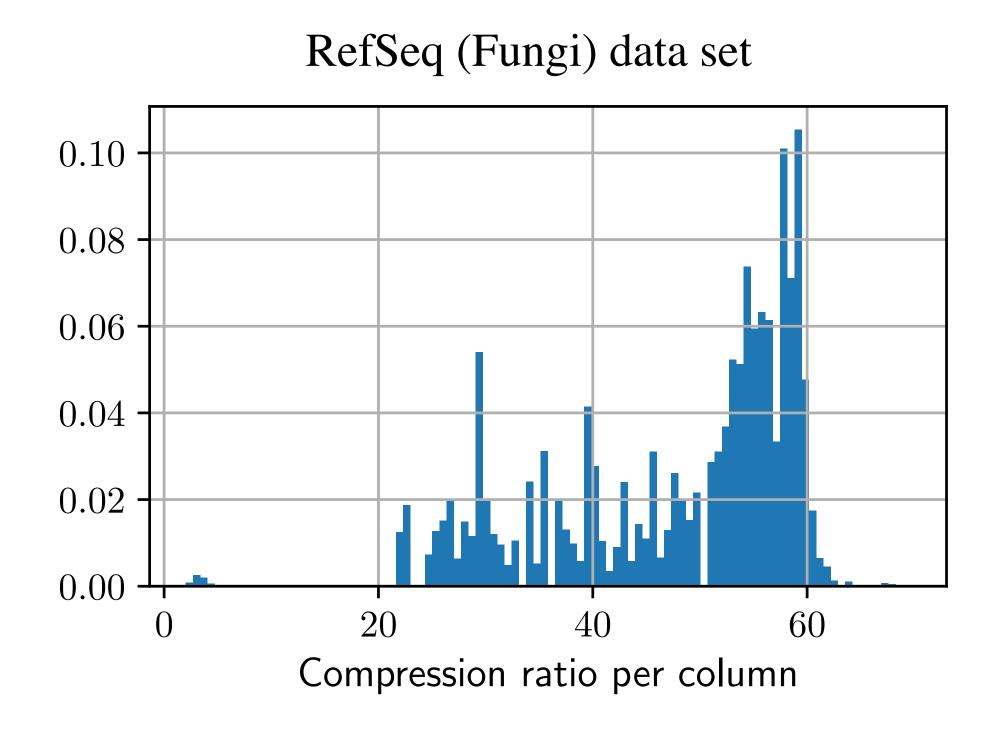
Representation size



- 1. RowDiff-MultiBRWT is significantly smaller than Rainbow-MST (30% on RNA-Seq and 26× on RefSeq)
- 2. RowDiff-MultiBRWT is smaller than the Rainbow mapping vector alone
- 3. The advantage is more evident on sparse graphs (RefSeq)

Distribution of compression ratios

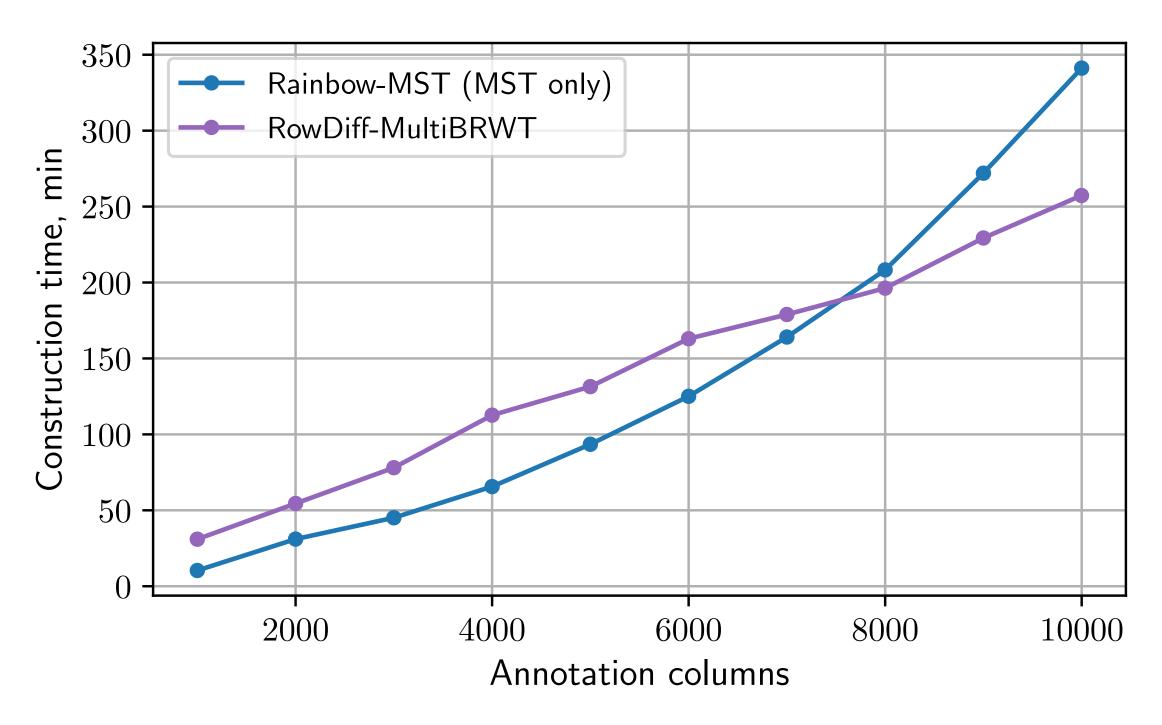




- On the denser RNA-Seq (k=31) graph (left), the compression ratio peaks at around 2×10^{-5}
- On the sparser RefSeq (Fungi) graph (right), the compression ratio peaks at $\approx 60 \times$

Results Construction time

Construction time for **RowDiff** and **MST** (without Rainbow vector) on the RNA-Seq (k=23) data set, with 72 threads.



- RowDiff construction is faster than MST
 - (Note, the construction time for MST does not include the time required to construct a Rainbow mapping vector, and hence, significantly underestimated)
- RowDiff construction time grows linearly, and thus, scales to very large graphs

Results Query time

Time for querying 100 and 1000 random human transcripts in the RNA-Seq (k=23) graph.

		Query time				
Query data	# rows	Multi	Mantis	RowDiff	RowDiff	
	queried	BRWT	MST	RowSparse	MultiBRWT	
100 trans.	44,995	51 sec	4.5 sec	8.3 sec	40 sec	
1000 trans.	553,280	226 sec	68 sec	54 sec	197 sec	

Comparable query performance

Results Query time

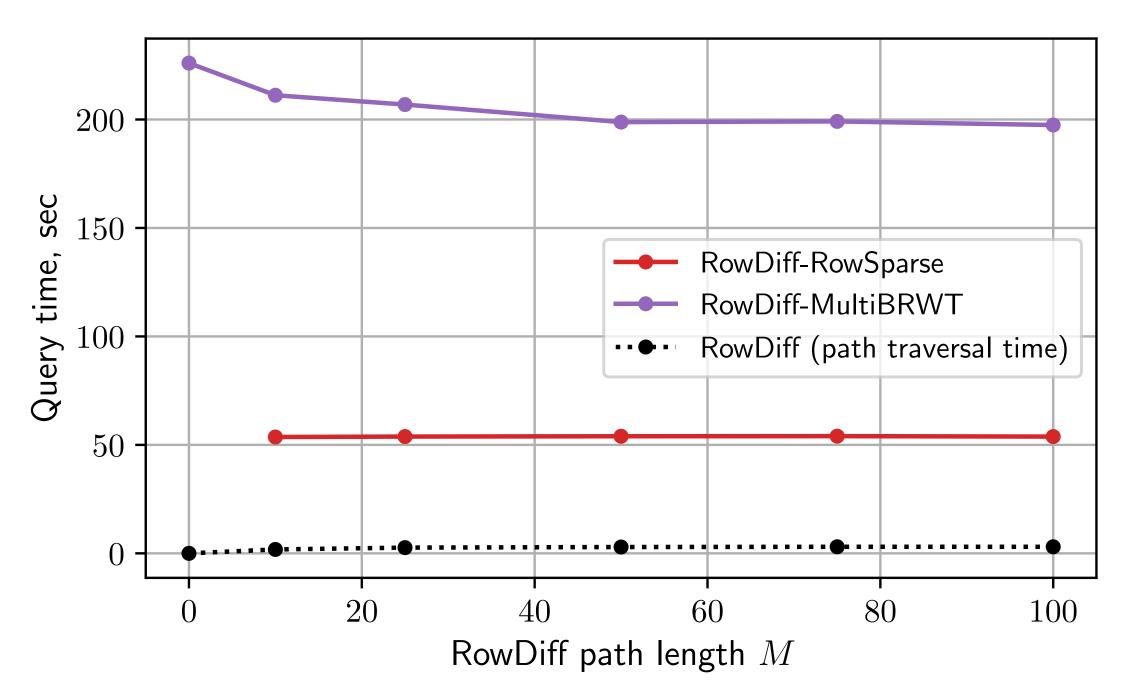
Time for querying 100 and 1000 random human transcripts in the RNA-Seq (k=23) graph.

		Query time				
Query data	# rows	Multi	Mantis	RowDiff	RowDiff	
	queried	BRWT	MST	RowSparse	MultiBRWT	
100 trans.	44,995	51 sec	4.5 sec	8.3 sec	40 sec	
1000 trans.	553,280	226 sec	68 sec	54 sec	197 sec	

- Comparable query performance
- RowDiff actually makes queries faster
 (sparser matrices are often faster to query)

Query time vs maximum row-diff path length ${\cal M}$

Query time for different values of the maximum RowDiff path length M. The graph is represented as a BOSS table.



- Graph traversal time is negligible even with slower succinct graph representations
- Surprisingly, the query time for RowDiff-MultiBRWT is faster for larger values of M (sparser matrices are faster to query!)

Conclusion

RowDiff is a powerful technique for sparsification of graph annotations

- 1. Acts as a transform of the original annotation matrix
 - makes it sparser and more compressible
 - uses graph topology, and thus, has a very small overhead (<1 bit per node)
- 2. Compatible with generic schemes for sparse matrix representation
 - e.g., Column, RowFlat, RowSparse, Multi-BRWT
- 3. Enables higher compression than state-of-the-art
 - 30% higher compression for RNA-Seq
 - 26× higher compression for RefSeq
- 4. Scales to very large graphs
 - constructs in linear time and constant memory

