ETH-zurich

Topology-based Sparsification of
Graph Annotations

Daniel Danciu*, Mikhail Karasikov*, Harun Mustafa, Andre Kahles, Gunnar Ratsch

ISMB/ECCB 2021

Background

Annotated de Bruijn Graphs

Constructed
from sequences

L1: AGCTTAA
12: GGCTTAT
L3: T'TAA

Background

Annotated de Bruijn Graphs

Constructed
from sequences

1 2: GGCTTAT

Background

Annotated de Bruijn Graphs
L2

Constructed
from sequences

L2: |GGCITTAT

Background

Annotated de Bruijn Graphs

L2

Constructed
from sequences

L2: GIGCTITAT

Background

Annotated de Bruijn Graphs

L2

Constructed
from sequences

12: GGQCTTIAT

Background

Annotated de Bruijn Graphs

L2

Constructed
from sequences

L2: GGC[ITTAIT

Background

Annotated de Bruijn Graphs

L2

Constructed
from sequences

12: GGCT[AT

Background
Annotated de Bruijn Graphs
|2 L1, L3

L1, L2 L1, L2, L3 @

TTA

Constructed
from sequences

L1: AGCTTAA
12: GGCTTAT
L3: T'TAA

Background

Annotated de Bruijn Graphs
|2 L1, L3

L1, L2 L1, L2, L3 @

TTA

TAA

TAT Constructed

GCT from sequences
AGC

GGC L1: AGCTTAA
— 12: GGCTTAT

k-mer dictionary L3: TLAA

(de Bruijn Graph)

Background
Annotated de Bruijn Graphs
|2 L1, L3

L1, L2 L1, L2, L3 @

TTA

L1 L2 L3

TAA 1 1

TAT 1 Constructed

GCT 1)1 from sequences

AGC 1

GGC 1 L1: AGCTTAA

CTT 11

. T 12: GGCTTAT
k-mer dictionary Graph annotation L3: LLAA

(de Bruijn Graph) (labeling)

Background

Annotated de Bruijn Graphs
|2 L1, L3

L1, L2 L1, L2, L3 @

TTA

Annotated 111213

TAA 1 1

TAT Graph 1 Constructed

GCT 1)1 from sequences

AGC 1

GGC 1 L1: AGCTTAA

CTT 11

. T 12: GGCTTAT
k-mer dictionary Graph annotation L3: LLAA

(de Bruijn Graph) (labeling)

Background
Annotated de Bruijn Graphs
|2 L1, L3

L1, L2 L1, L2, L3 @

TTA

Annotated 111213

— T s Actual size:

TAT Graph 1 ~ 101 % 10° Constructed

GCT 111 from sequences

AGC 1

GGC 1 L1: AGCTTAA

CTT 11

m— 113 12: GGCTTAT
k-mer dictionary Graph annotation L3: TLAA

(de Bruijn Graph) (labeling)

Background

Graph Annotation Representations

L1l L2 L3

1

1

~ 10°

N 1011

Background

Graph Annotation Representations

N 1011

L1 L2 L3
1 1
1. Column-major sparse representation 1
1
L1 L2 L3 L1 L2 L3
1 1 1 1 1
1 1 11111
111 1 1 106
1 —_— | 1 ™
111 1 1
11111 1 1 1

Background

Graph Annotation Representations

L1 L2 L3
1 1
1. Column-major sparse representation 1
1
N 1011
L1 L2 L3 L1 L2 L3
1 1 1 1 1
1 1 11111
111 1 1 6
1 —_— |1 ~ 10
111 1 1
11111 1 1 1

Columns are stored independently as compressed bitmaps
(e.g. sd_vector [Okanohara et al., 2007])

Background

Graph Annotation Representations

1. Column-major sparse representation
2. Multi-BRWT [Karasikov et al., 2019]

~N OO O WO DN =

Background

Graph Annotation Representations

1. Column-major sparse representation
2. Multi-BRWT [Karasikov et al., 2019]

N OO O A WON =
—
—
—
_L_L_L_L_LO_Ll

Background

Graph Annotation Representations

1.
2. Multi-BRWT [Karasikov et al., 2019]

Column-major sparse representation

VN OO O WO DN =

|

~N O O A WO =

|

|

s N
- ~
s

N~ o o A~ w 2/

/
/
/
S G G T O @ T ¢
// |
/

Background

Graph Annotation Representations

1.
2. Multi-BRWT [Karasikov et al., 2019]

Column-major sparse representation

VN OO O WO DN =

|

VRS
-, ~
-’

N O O A WO =

y

1

\
\
|—L—Looo—u|\
\\
\

/
/
/
S G G T O @ T ¢
// |
/

N o o b ow =S

|oo—~—~—no|

Background

Graph Annotation Representations

1.
2. Multi-BRWT [Karasikov et al., 2019]

Column-major sparse representation

N o o A W =

1 1 1 1
2 0
3 1 1
4 1
5 1
6|1 1
7 11 1
1 1] 1 0
0 3 1
0 4 1
0 5 1 1
1 6 0
111_ 7 l
1 1111 0 1
1 0 1 1111
0 RS 1 0
11 1111 3[]
I I BB R A g

Background

Graph Annotation Representations

1. Column-major sparse representation
2. Multi-BRWT [Karasikov et al., 2019]
3. RowkFlat (employed in VARI [Muggli et al., 2017])

L1 L2 L3
1 1

Background

Graph Annotation Representations

1. Column-major sparse representation
2. Multi-BRWT [Karasikov et al., 2019]
3. RowkFlat (employed in VARI [Muggli et al., 2017])

L1 L2 L3

1 1
1
1
—> (1| (1| [2] [1]2] |2 BEEEREE
1 Concatenate all rows and compress in a bitmap
e (e.g. sd_vector [Okanohara et al., 2007])

Background

Graph Annotation Representations

1. Column-major sparse representation
2. Multi-BRWT [Karasikov et al., 2019]
3. RowkFlat (employed in VARI [Muggli et al., 2017])
4. Rainbowfish [Almodaresi et al., 2017]
10 1] (A hy: 1] (1 1 11 1) [1]
2 h, h : ! VARI-style compression
3 1 h, hi : 1 |
L ", h; 1 /
: 1 s Zj J JEIEIE
. 11 h4 row-dictionary

data Rainbow mapping

vector

Background

Graph Annotation Representations

Column-major sparse representation
Multi-BRWT [Karasikov et al., 2019]

RowFlat (employed in VARI [Muggli et al., 2017])
Rainbowfish [AlImodaresi et al., 2017]
Mantis-MST [Almodaresi et al., 2019]

1] 1] [A, By i (1] 1]

h
h, :
‘ h, :| 1
1 : @l .

1 1 h4 ///,f row-aictonary 1 1

o k~ L b =

N O ok WON =
w—h
S S S S S

data Rainbow mapping MST

vector

Background

Graph Annotation Representations

Column-major sparse representation
Multi-BRWT [Karasikov et al., 2019]

RowFlat (employed in VARI [Muggli et al., 2017])
Rainbowfish [AlImodaresi et al., 2017]

o k~ L b =

N OO O B~ WO NN =
—

Rainbow mapping MST

vector

Background

Graph Annotation Representations

Column-major sparse representation
Multi-BRWT [Karasikov et al., 2019]

RowFlat (employed in VARI [Muggli et al., 2017])
Rainbowfish [AlImodaresi et al., 2017]
Mantis-MST [Almodaresi et al., 2019]

o k~ L b =

N OO O B WO N =
—

Rainbow mapping
vector

Background

Graph Annotation Representations

Column-major sparse representation
Multi-BRWT [Karasikov et al., 2019]

RowFlat (employed in VARI [Muggli et al., 2017])
Rainbowfish [AlImodaresi et al., 2017]
Mantis-MST [Almodaresi et al., 2019]

o k~ L b =

N OO O B WO N =
—

+

(Rainbow mapping
vector

Method

RowDiff Transform
TAA Ll - Ll
Observe: T
: . . . AGC |1
 Adjacent nodes share similar annotations soc|[[
CTT(11]1
. 11111
Key idea: 2 — s

® Store Only d|ffs @\U,LZ L1, L2 L1, L2, L3

Lé(v) = L(v) D L(vsuce) é/'@/_\

(@ is XOR)

Method

RowDiff Transform

L1 L2 L3 L1 L2 L3

TAA||1 1 217207

1 212 ?

Observe: = v T

_ S _ AGC || 1 —_— 227

 Adjacent nodes share similar annotations soc|| |1 HBE

CTT Usucc Sl

. TTA|l1[1]1 o I
Key idea: L2 L1, L3

® Store iny d|ffs @\L‘I,LZ L1, L2 L1, L2, L3

L(v) = L(v) ® L(veuee) (@/\‘

(@ is XOR)

Method

RowDiff Transform
L1 L2 L3 L1 L2 L3
TAA||1 1 217207
1 21727
Observe: gfﬁ v
_ o _ AGC|]|1 —_— | 22]7
 Adjacent nodes share similar annotations soc|| |1 HBE
CTT Usucc Sl
. TTA|l1[1]1 o I
Key idea: L2 11,13

%)
» Store only diffs @\M L1, L2 1, 12,19

L(v) = L(v) ® L(veuee) (@/\‘

(@ is XOR)

Method

RowDiff Transform

L1 L2 L3 L1 L2 L3
TAA||1 1 217207
1 2122

Observe: pew |
_ o _ AGC|]|1 —_— | 22]7
 Adjacent nodes share similar annotations soc|| |1 HBE
CTT U SR
Key dea: TTall1|1]1] Usucc 222

L1, L2, L3

o Store only diffs
L°(v) = L(v) & L(vsyce)

(@ is XOR)

Method

RowDiff Transform

L1 L2 L3 L1 L2 L3
TAA || 1 1 2177
TAT 1 2177

Observe: 1
_ S _ AGC||1 - [2]2]°?
 Adjacent nodes share similar annotations cec|[|1 HBE
CTT U 1
Key dea: TTall1|1]1] Usucc 222

L1, L2, L3

o Store only diffs
L°(v) = L(v) & L(vsyce)

(@ is XOR)

Method

RowDiff Transform
L1 L2 L3 L1 L2 L3
TAA || 1 1 2177
1 2122
Observe: e e
_ S _ AGC||1 - [2]2]°?
 Adjacent nodes share similar annotations cec|| |1 HBE
CTT (|11 1
. TTA|l1[1]1 o I
Key idea: 2 1,13

% L3
» Store only diffs @\M >< 1,12,13

Lé(v) = L(v) D L(vsuce) é/'@/_\

(@ is XOR)

Method

RowDiff Transform
L1 L2 L3 L1 L2 L3
TAA || 1 1 2177
1 2122
Observe: pew |
: . _ AGC||1 — 1
 Adjacent nodes share similar annotations soc|| |1 1
CTT||1|1 1
. L1 TTA|l1[1]1 o I
Key idea: 1,13

L1, L2, L3

o Store only diffs
L°(v) = L(v) & L(vsyce)

(@ is XOR)

Method

RowDiff Transform
L1 L2 L3 L1 L2 L3
TAA || 1 1 2177
1 2122
Observe: pew |
: . _ AGC||1 — 1
 Adjacent nodes share similar annotations soc|| |1 1
CTT||1|1 1
. L1 TTA|l1[1]1 o I
Key idea: 1,13

L1, L2, L3

o Store only diffs
L°(v) = L(v) & L(vsyce)

(@ is XOR)

Method

RowDiff Transform
L1 L2 L3 L1 L2 L3
TAA || 1 1 2177
1 2122
Observe: pew |
: . _ AGC||1 — 1
 Adjacent nodes share similar annotations soc|| |1 1
CTT||1|1 1
. L1 TTA|l1[1]1 o I
Key idea: 1,13

L1, L2, L3

o Store only diffs
L°(v) = L(v) & L(vsyce)

(@ is XOR)

Method

RowDiff Transform
L1 L2 L3 L1 L2 L3
TAA || 1 1 2177
1 2122
Observe: pew |
: . _ AGC||1 — 1
 Adjacent nodes share similar annotations soc|| |1 1
CTT||1|1 1
. L1 TTA||1[1]1 1
Key idea: 1,13

o Store only diffs
L°(v) = L(v) & L(vsyce)

(@ is XOR)

Method

RowDiff Transform
L1 L2 L3 L1 L2 L3
TAA || 1 1 21?7 1
1 21727 1
Observe: pew |
: . _ AGC||1 — 1
 Adjacent nodes share similar annotations soc|| |1 1
CTT||1|1 1
. L1 TTA||1[1]1 1
Key idea: 1,13

o Store only diffs
L°(v) = L(v) & L(vsyce)

(@ is XOR)

Method

RowDiff Transform

TAA Ll1 - Ll3 Ll1 - L13 i
Observe: T ——
 Adjacent nodes share similar annotations %EE 1 . BenE 1
Key idea: x e l 1,13

» Store only diffs @\Di@

L(v) = L(v) ® L(venee) y

X
(@ is XOR)

RowDiff effectively transforms the matrix:

* makes it sparser, and thus, more compressible
* can be applied with any matrix representation
* the overhead is very small (<1 bit per node)

Method

RowDiff Transform
L1 L2 L3 L1 L2 L3 a
TAA || 1 1 1 1 1
TAT 1 1 1
Observe: 1
: . _ AGC||1 — 1
 Adjacent nodes share similar annotations soc|| |1 1
CTT||1|1 1
. L1 TTA||1[1]1 1
Key idea: X 1, L3

» Store only diffs @\Di@

L(v) = L(v) ® L(venee) v

 Reconstruct
RowDiff effectively transforms the matrix:

")
L(U) — L(USUCC) D L (U) * makes it sparser, and thus, more compressible

f * can be applied with any matrix representation

reconstruct recursively * the overhead is very small (<1 bit per node)

Method

RowDiff: Query

Algorithm 1 Row annotation reconstruction

1: function ReconstructAnnotation(i)
2 row <— A7

3 while a; =0 do > current vertex 1s not an anchor
4 i < succ(i)

5: row <— row @ A7
6: end while

7 return row

8: end function

Method

RowDiff: Query

Algorithm 1 Row annotation reconstruction

1: function ReconstructAnnotation(i)
2 row <— A7

3 while a; =0 do > current vertex is not an anchor
4 i < succ(i)

5: row <— row @ A7
6: end while

7 return row

8: end function

1. Every sink node (with no outgoing edges) must be anchored >Q~>.\

"o

Method

RowDiff: Query

Algorithm 1 Row annotation reconstruction

1: function ReconstructAnnotation(i)
2 row <— A7

3 while a; =0 do > current vertex is not an anchor
4 i < succ(i)

5: row <— row @ A7
6: end while

7 return row

8: end function

1. Every sink node (with no outgoing edges) must be anchored

2. Every row-diff cycle must have at least one anchor node in it

Method

RowDiff: Query

Algorithm 1 Row annotation reconstruction

1: function ReconstructAnnotation(i)
2 row <— A7

3 while a; =0 do > current vertex 1s not an anchor
4 i < succ(i)

5: row <— row @ A7
6: end while

7 return row

8: end function

1. Every sink node (with no outgoing edges) must be anchored

2. Every row-diff cycle must have at least one anchor node in it

Method

RowDiff: Query

Algorithm 1 Row annotation reconstruction

1: function ReconstructAnnotation(i)
2 row <— A7

3 while a; =0 do > current vertex 1s not an anchor
4 i < succ(i)

5: row <— row @ A7
6: end while

7 return row

8: end function

1. Every sink node (with no outgoing edges) must be anchored

2. Every row-diff cycle must have at least one anchor node in it

Method

RowDiff: Query

Algorithm 1 Row annotation reconstruction

1: function ReconstructAnnotation(i)
2 row <— A7

3 while a; =0 do > current vertex 1S not an anchor
4 i < succ(i)

5: row <— row @ A7
6: end while

7 return row

8: end function

1. Every sink node (with no outgoing edges) must be anchored

2. Every row-diff cycle must have at least one anchor node in it

Method

RowDiff: Query

Algorithm 1 Row annotation reconstruction

1: function ReconstructAnnotation(i)
2 row <— A7

3 while a; =0 do > current vertex 1S not an anchor
4 i < succ(i)

5: row <— row @ A7
6: end while

7 return row

8: end function

1. Every sink node (with no outgoing edges) must be anchored

2. Every row-diff cycle must have at least one anchor node in it

Method

RowDiff: Query

Algorithm 1 Row annotation reconstruction

1: function ReconstructAnnotation(i)
2 row <— A7

3 while a; =0 do > current vertex 1s not an anchor
4 i < succ(i)

5: row <— row @ A7
6: end while

7 return row

8: end function

1. Every sink node (with no outgoing edges) must be anchored
2. Every row-diff cycle must have at least one anchor node in it

3. Length of each row-diff path is bounded by a constant ~/\/
(to ensure a constant query time complexity)

Method

RowDiff: Anchor Assignment

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -tn node)

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -tn node)

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -tn node)

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -tn node)

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -tn node)

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -tn node)

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -tn node)

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -tn node)

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -tn node)

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -tn node)

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -tn node)

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -tn node)

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -tn node)

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -tn node)

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -tn node)

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -th node)
* Up to this point, there are no row-diff paths longer than M

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -th node)
* Up to this point, there are no row-diff paths longer than M

* In practice, this covers 98% of the nodes

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -th node)
* Up to this point, there are no row-diff paths longer than M

* In practice, this covers 98% of the nodes

* Traverses trees, hence, easy to parallelize

Method

RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -th node)
* Up to this point, there are no row-diff paths longer than M

* In practice, this covers 98% of the nodes

* Traverses trees, hence, easy to parallelize

4. Now we need to process the rest
— row-diff paths that end with a cycle
(forward traversal algorithm, see next slide...)

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

A
.

‘\

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node is

reached f

2) Make that node an anchor
(as well as every M -th node in that path) /'

.

‘\

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node is

reached f

2) Make that node an anchor
(as well as every M -th node in that path) /'

.

‘\

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node is

reached f

2) Make that node an anchor
(as well as every M -th node in that path) /'

.

‘\

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node is

reached f

2) Make that node an anchor
(as well as every M -th node in that path) /'

.

‘\

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

2) Make that node an anchor
(as well as every M -th node in that path)

3) Repeat until all nodes are visited

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

2) Make that node an anchor
(as well as every M -th node in that path)

3) Repeat until all nodes are visited

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

2) Make that node an anchor
(as well as every M -th node in that path)

3) Repeat until all nodes are visited

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

2) Make that node an anchor
(as well as every M -th node in that path)

3) Repeat until all nodes are visited

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

2) Make that node an anchor
(as well as every M -th node in that path)

3) Repeat until all nodes are visited

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

2) Make that node an anchor
(as well as every M -th node in that path)

3) Repeat until all nodes are visited

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

2) Make that node an anchor
(as well as every M -th node in that path)

3) Repeat until all nodes are visited

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

2) Make that node an anchor
(as well as every M -th node in that path)

3) Repeat until all nodes are visited

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

2) Make that node an anchor
(as well as every M -th node in that path)

3) Repeat until all nodes are visited

f
/“\-’/'

o

“near anchor”
thus, new anchor isn’t created

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node is

reached f
2) Make that node an anchor
(as well as every M -th node in that path) /‘\‘ /'
3) Repeat until all nodes are visited \‘ o
ast predecessors
J ?re rlwgot marked as
/ near anchors”

“near anchor”
thus, new anchor isn’t created

Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

2) Make that node an anchor
(as well as every M -th node in that path)

3) Repeat until all nodes are visited

No row-diff paths are longer than 2\

f

/“\-’/'
I

S oy

“near anchor”
thus, new anchor isn’t created

last predecessors
are not marked as
“near anchors”

Method

RowDiff: Construction Algorithm

1. Precompute row-diff successors

and predecessors for each node
(so we don’t need to keep the graph in memory anymore)

2. Load next batch of columns from disk

- Sequentially load blocks of succ/pred arrays and
transform the columns at those positions

- The columns from the batch are transformed in
parallel

3. Go to 2. until all columns are transformed

- The batches can be distributed to multiple
machines and transformed in parallel

Sparsification overview

Load in batches

Sparsify in parallel

1

P; 85
T E
pk sk

pred/succ

parallel

Method

RowDiff Transform: Implementation

Repository with code and resources: github.com/ratschlab/row diff

RowDiff is implemented within the MetaGraph framework
* Succinct graph representations (based on the BOSS table) H /<‘>\

« Graph annotation representations (e.9., Multi-BRWT)

» Hybrid bit vector representations VietaGraph

Special thanks to sdsl-lite (Succinct Data Structure Library)
« Compressed and packed bitmaps
e Bitmaps with disk swap (sdsl::int vector bu

o~ o~

er)

https://github.com/ratschlab/row_diff
https://github.com/ratschlab/metagraph
https://github.com/simongog/sdsl-lite

Results

Data sets used In experiments

RNA-Seq runs

10,000 RNA-Seqg SRA runs [Almodaresi et al., 2019]
e k=23o0r 31
 More complex (more bifurcation nodes)

RefSeq genomes

 RefSeq release 97, Fungi genomes
e k=231
 |Less complex (mostly linear paths)

10

Results

Compression ratio vs k-mer size

Compression ratio on a random subset of 1570 RefSeq (Fungi) annotation columns.

k-mer size | Average out-degree | Compression ratio |A|/|A*|
15 1.98 1.30
17 1.10 4.79
19 1.01 18.89
23 1.003 31.66
31 1.0017 34.53

* The sparser the graph, the higher the compression ratio

k=23 makes the graph sufficiently sparse to enable a good compression

Results

Size vs. maximum row-diff path length)/

Annotation size (in GB) vs maximum RowDiff path length M for RNA-Seq (k=23, 31) and Refseq Fungi (k=31).

Dataset M=0 | M=10 | M=25 | M=50 | M=75 | M=100
RNA-Seq (k=23) | 214 | 125.1| 119.8 | 1183 | 118.0| 117.8
RNA-Seq (k=31) | 151 | 70.7| 649 | 632 62.6 62.2
RefSeq (Fungi) 11.2 | 152 0.713]| 0.419 | 0.317| 0.265

f

no transform

Results

Size vs. maximum row-diff path length)/

Annotation size (in GB) vs maximum RowDiff path length M for RNA-Seq (k=23, 31) and Refseq Fungi (k=31).

Dataset M=0 | M=10 [M=25 | M=50 | M=75 | M=100
RNA-Seq (k=23) | 214 A 125.1 A 119.8 A 1183 A 1180) 117.8
RNA-Seq (k=31)| 1519707 B 649 6321 626 B 62.2
RefSeq (Fungi) | 112§ 1.52)0.713 ¥0.419 F0.317 ¥ 0.265

f

no transform

e Setting larger M increases the compression ratio

Results
Size vs. maximum row-diff path length)/

Annotation size (in GB) vs maximum RowDiff path length M for RNA-Seq (k=23, 31) and Refseq Fungi (k=31).

Dataset M=0 | M=10 | M=25 | M=50 | M=75 | M=100
RNA-Seq (k=23) | 214 | 125.1 | 119.8
RNA-Seq (k=31) | 151 | 70.7| 64.9
RefSeq (Fungi) 11.2 | 1.52 | 0.713

f

no transform

e Setting larger M increases the compression ratio

« M > 50 enables a very good compression ratio

Results

Representation size

RNA-Seq (k=23) data set RefSeq (Fungi) data set
—e— Rainbow-MST 15.0 7" —e— Rainbow-MST
Rainbow-MST (mapping only) Rainbow-MST (mapping only)
807 —o— MultiBRWT 12.5 7 —e— MultiBRWT
—&— RowDiff-RowSparse —&— RowDiff-RowSparse /m
60 - —®— RowDiff-MultiBRWT 10.0 4+ —e— RowDiff-MultiBRWT -
M AN
@) @
QN)— qr\); 7.5 -
n 407 N
5.0 1
201 2.5 -
004 T p———————8— ¢
O ! | | | | | . | | | | | |
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 12000

Number of SRA samples Number of taxonomy IDs

1. RowDiff-MultiBRWT is significantly smaller than Rainbow-MST (30% on RNA-Seqg and 26x on RefSeq)
2. RowDiff-MultiBRWT is smaller than the Rainbow mapping vector alone

3. The advantage is more evident on sparse graphs (RefSeq)

Results

Distribution of compression ratios

RNA-Seq (k=31) data set RetfSeq (Fungi) data set
' 0.10 -
0.8 1
I 0.08 -
0.6 1
I 0.06 -
04 IL 0.04 - -
0.2 - 0.02 - | II |III|.
2.9 5.0 7.9

10.0 12,5 15.0 17.5 0 20 40 60
Compression ratio per column Compression ratio per column

* On the denser RNA-Seq (k=31) graph (left), the compression ratio peaks at around 2x
* On the sparser RefSeq (Fungi) graph (right), the compression ratio peaks at = 60x

Results

Construction time

Construction time for RowDiff and MST (without Rainbow vector) on the RNA-Seq (k=23) data set, with 72 threads.

350
—o— Rainbow-MST (MST only)

300 + —®— RowDiff-MultiBRW'T

250 -
200 A
150

100 A

Construction time, min

50

O_

2000 4000 6000 8000 10000
Annotation columns

e RowDiff construction is faster than MST

(Note, the construction time for MST does not include the time required to construct a Rainbow mapping vector, and hence, significantly underestimated)

 RowDiff construction time grows linearly, and thus, scales to very large graphs

15

Results
Query time

Time for querying 100 and 1000 random human transcripts in the RNA-Seq (k=23) graph.

Query time

Query data | #rows | Multi | Mantis | RowDiff RowDiff

queried | BRWT | MST | RowSparse | MuliBRWT
100 trans. | 44,995 | 51 sec | 4.5 sec 8.3 sec 40 sec

1000 trans. | 553,280 | 226 sec | 68 sec 54 sec 197 sec

 Comparable query performance

Results
Query time

Time for querying 100 and 1000 random human transcripts in the RNA-Seq (k=23) graph.

Query time
Query data | #rows | Multi | Mantis | RowDiff RowDiff
queried | BRWT | MST | RowSparse | MuliBRWT

100 trans. | 44,9958 51 sec §4.5 sec 8.;sec 40 sec
1000 trans. | 553,2800 226 sec | 68 sec 547sec 197 sec

 Comparable query performance

 RowDiff actually makes queries faster
(sparser matrices are often faster to query)

Results

Query time vs maximum row-diff path length 1/

Query time for different values of the maximum RowDiff path length M . The graph is represented as a BOSS table.

200 - — —o o o
O
» 150 -
v —e— RowDiff-RowSparse
E —o— RowDiff-MultiBRWT
> 100 -+ @+ RowDiff (path traversal time)
5
e/
50 [@ @ @ ®
O Q@:-==""" EERERRIRN @:--crssssannnnnns @ rrsssssaannnaa @ rsssssssaannns ®
0 20 40 60 30 100

RowDiff path length M

* (Graph traversal time is negligible even with slower succinct graph representations

o Surprisingly, the query time for RowDiff-MultiBRWT is faster for larger values of M
(sparser matrices are faster to query!)

17

Conclusion

RowDiff is a powerful technigque for sparsification of graph annotations

1. Acts as a transform of the original annotation matrix
* makes it sparser and more compressible
» uses graph topology, and thus, has a very small overhead (<1 bit per node)

2. Compatible with generic schemes for sparse matrix representation
* e.9., Column, RowFlat, RowSparse, Multi—-BRWT

3. Enables higher compression than state-of-the-art
« 30% higher compression for RNA-Seqg
« 26x higher compression for RefSeqg

4. Scales to very large graphs
» constructs in linear time and constant memory

Big Data
National Research Programme

18

