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Columns are stored independently as compressed bitmaps
(e.g. sd_vector [Okanohara et al., 2007])
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RowDiff: Query

Algorithm 1 Row annotation reconstruction

1: function ReconstructAnnotation(i)
2 row <— A7

3 while a; =0 do > current vertex 1s not an anchor
4 i < succ(i)

5: row <— row @ A7
6: end while

7 return row

8: end function

1. Every sink node (with no outgoing edges) must be anchored
2. Every row-diff cycle must have at least one anchor node in it

3. Length of each row-diff path is bounded by a constant ~/\/
(to ensure a constant query time complexity)
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RowDiff: Anchor Assignment

1. For each fork, pick a row-diff successor
(e.q., lexicographically smallest)

2. Anchor all sink nodes

3. Start at sink nodes and
traverse along row-diff paths backwards

(anchor every M -th node)
* Up to this point, there are no row-diff paths longer than M

* In practice, this covers 98% of the nodes

* Traverses trees, hence, easy to parallelize

4. Now we need to process the rest
— row-diff paths that end with a cycle
(forward traversal algorithm, see next slide...)
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(as well as every M -th node in that path) /‘\‘ /'
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Method

RowDiff: Anchor Assignment (part 2)

1) Start traversal at unvisited nodes and
traverse forward until a visited node Is
reached

2) Make that node an anchor
(as well as every M -th node in that path)

3) Repeat until all nodes are visited

No row-diff paths are longer than 2\

f

/“\-’/'
I

S oy

“near anchor”
thus, new anchor isn’t created

last predecessors
are not marked as
“near anchors”



Method

RowDiff: Construction Algorithm

1. Precompute row-diff successors

and predecessors for each node
(so we don’t need to keep the graph in memory anymore)

2. Load next batch of columns from disk

- Sequentially load blocks of succ/pred arrays and
transform the columns at those positions

- The columns from the batch are transformed in
parallel

3. Go to 2. until all columns are transformed

- The batches can be distributed to multiple
machines and transformed in parallel

Sparsification overview

Load in batches

Sparsify in parallel

1

P; 85
T E
pk sk

pred/succ

parallel




Method

RowDiff Transform: Implementation

Repository with code and resources: github.com/ratschlab/row diff

RowDiff is implemented within the MetaGraph framework
* Succinct graph representations (based on the BOSS table) H /<‘>\

« Graph annotation representations (e.9., Multi-BRWT)

» Hybrid bit vector representations VietaGraph

Special thanks to sdsl-lite (Succinct Data Structure Library)
« Compressed and packed bitmaps
e Bitmaps with disk swap (sdsl::int vector bu

o~ o~

er)



https://github.com/ratschlab/row_diff
https://github.com/ratschlab/metagraph
https://github.com/simongog/sdsl-lite

Results

Data sets used In experiments

RNA-Seq runs

10,000 RNA-Seqg SRA runs [Almodaresi et al., 2019]
e k=23o0r 31
 More complex (more bifurcation nodes)

RefSeq genomes

 RefSeq release 97, Fungi genomes
e k=231
 |Less complex (mostly linear paths)
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Results

Compression ratio vs k-mer size

Compression ratio on a random subset of 1570 RefSeq (Fungi) annotation columns.

k-mer size | Average out-degree | Compression ratio |A|/|A*|
15 1.98 1.30
17 1.10 4.79
19 1.01 18.89
23 1.003 31.66
31 1.0017 34.53

* The sparser the graph, the higher the compression ratio

k=23 makes the graph sufficiently sparse to enable a good compression



Results

Size vs. maximum row-diff path length )/

Annotation size (in GB) vs maximum RowDiff path length M for RNA-Seq (k=23, 31) and Refseq Fungi (k=31).

Dataset M=0 | M=10 | M=25 | M=50 | M=75 | M=100
RNA-Seq (k=23) | 214 | 125.1| 119.8 | 1183 | 118.0| 117.8
RNA-Seq (k=31) | 151 | 70.7| 649 | 632 62.6 62.2
RefSeq (Fungi) 11.2 | 152 0.713 ]| 0.419 | 0.317| 0.265

f

no transform
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Size vs. maximum row-diff path length )/

Annotation size (in GB) vs maximum RowDiff path length M for RNA-Seq (k=23, 31) and Refseq Fungi (k=31).

Dataset M=0 | M=10 [ M=25 | M=50 | M=75 | M=100
RNA-Seq (k=23) | 214 A 125.1 A 119.8 A 1183 A 1180 ) 117.8
RNA-Seq (k=31)| 1519707 B 649 6321 626 B 62.2
RefSeq (Fungi) | 112§ 1.52)0.713 ¥0.419 F0.317 ¥ 0.265

f

no transform

e Setting larger M increases the compression ratio



Results
Size vs. maximum row-diff path length )/

Annotation size (in GB) vs maximum RowDiff path length M for RNA-Seq (k=23, 31) and Refseq Fungi (k=31).

Dataset M=0 | M=10 | M=25 | M=50 | M=75 | M=100
RNA-Seq (k=23) | 214 | 125.1 | 119.8
RNA-Seq (k=31) | 151 | 70.7| 64.9
RefSeq (Fungi) 11.2 | 1.52 | 0.713

f

no transform

e Setting larger M increases the compression ratio

« M > 50 enables a very good compression ratio



Results

Representation size

RNA-Seq (k=23) data set RefSeq (Fungi) data set
—e— Rainbow-MST 15.0 7" —e— Rainbow-MST
Rainbow-MST (mapping only) Rainbow-MST (mapping only)
807 —o— MultiBRWT 12.5 7 —e— MultiBRWT
—&— RowDiff-RowSparse —&— RowDiff-RowSparse /m
60 - —®— RowDiff-MultiBRWT 10.0 4+ —e— RowDiff-MultiBRWT -
M AN
@) @
QN)— qr\); 7.5 -
n 407 N
5.0 1
201 2.5 -
004 T p———————8— ¢
O ! | | | | | . | | | | | |
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 12000

Number of SRA samples Number of taxonomy IDs

1. RowDiff-MultiBRWT is significantly smaller than Rainbow-MST (30% on RNA-Seqg and 26x on RefSeq)
2. RowDiff-MultiBRWT is smaller than the Rainbow mapping vector alone

3. The advantage is more evident on sparse graphs (RefSeq)



Results

Distribution of compression ratios

RNA-Seq (k=31) data set RetfSeq (Fungi) data set
' 0.10 -
0.8 1
I 0.08 -
0.6 1
I 0.06 -
04 IL 0.04 - -
0.2 - 0.02 - | II |III|.
2.9 5.0 7.9

10.0 12,5 15.0 17.5 0 20 40 60
Compression ratio per column Compression ratio per column

* On the denser RNA-Seq (k=31) graph (left), the compression ratio peaks at around 2x
* On the sparser RefSeq (Fungi) graph (right), the compression ratio peaks at = 60x




Results

Construction time

Construction time for RowDiff and MST (without Rainbow vector) on the RNA-Seq (k=23) data set, with 72 threads.

350
—o— Rainbow-MST (MST only)

300 + —®— RowDiff-MultiBRW'T

250 -
200 A
150

100 A

Construction time, min

50

O_

2000 4000 6000 8000 10000
Annotation columns

e RowDiff construction is faster than MST

(Note, the construction time for MST does not include the time required to construct a Rainbow mapping vector, and hence, significantly underestimated)

 RowDiff construction time grows linearly, and thus, scales to very large graphs
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Results
Query time

Time for querying 100 and 1000 random human transcripts in the RNA-Seq (k=23) graph.

Query time

Query data | #rows | Multi | Mantis | RowDiff RowDiff

queried | BRWT | MST | RowSparse | MuliBRWT
100 trans. | 44,995 | 51 sec | 4.5 sec 8.3 sec 40 sec

1000 trans. | 553,280 | 226 sec | 68 sec 54 sec 197 sec

 Comparable query performance



Results
Query time

Time for querying 100 and 1000 random human transcripts in the RNA-Seq (k=23) graph.

Query time
Query data | #rows | Multi | Mantis | RowDiff RowDiff
queried | BRWT | MST | RowSparse | MuliBRWT

100 trans. | 44,9958 51 sec §4.5 sec 8.;sec 40 sec
1000 trans. | 553,2800 226 sec | 68 sec 547sec 197 sec

 Comparable query performance

 RowDiff actually makes queries faster
(sparser matrices are often faster to query)



Results

Query time vs maximum row-diff path length 1/

Query time for different values of the maximum RowDiff path length M . The graph is represented as a BOSS table.

200 - — —o o o
O
» 150 -
v —e— RowDiff-RowSparse
E —o— RowDiff-MultiBRWT
> 100 -+ @+ RowDiff (path traversal time)
5
e/
50 [ @ @ @ ®
O Q@:-=="""  EERERRIRN @:--crssssannnnnns @ rrsssssaannnaa @ rsssssssaannns ®
0 20 40 60 30 100

RowDiff path length M

* (Graph traversal time is negligible even with slower succinct graph representations

o Surprisingly, the query time for RowDiff-MultiBRWT is faster for larger values of M
(sparser matrices are faster to query!)
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Conclusion

RowDiff is a powerful technigque for sparsification of graph annotations

1. Acts as a transform of the original annotation matrix
* makes it sparser and more compressible
» uses graph topology, and thus, has a very small overhead (<1 bit per node)

2. Compatible with generic schemes for sparse matrix representation
* e.9., Column, RowFlat, RowSparse, Multi—-BRWT

3. Enables higher compression than state-of-the-art
« 30% higher compression for RNA-Seqg
« 26x higher compression for RefSeqg

4. Scales to very large graphs
» constructs in linear time and constant memory

Big Data
National Research Programme
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