

Searching in nucleotide archives at petabase scale with MetaGraph

Mikhail Karasikov

Zurich Seminars in Bioinformatics 2022

24 November 2022 (Zurich, Switzerland)

Growth of sequence archives

- Sequences (2.6 billions) - Bases (12.8 trillions)

Data source: https://www.ebi.ac.uk/ena/browser/about/statistics

Growth of sequence archives

Data source: https://www.ebi.ac.uk/ena/browser/about/statistics

Growth of sequence archives

Data source: https://www.ebi.ac.uk/ena/browser/about/statistics

What we want

Q

Google Search

Ļ

I'm Feeling Lucky

What we want

Q

Google Search

I'm Feeling Lucky

What we want

AAAGTTGTGTAGTGCGATCGGTGGATGCCTTGGCAC

Google Search

Q

I'm Feeling Lucky

For sequence data

Ļ

Biological sequence archives

Name	Institute(s)	Type	Size (Tc)	Date
Protein Data Bank (PDB) [34]	RCSB	Protein structure	0.000037	06.2022
UniProtKB [76]	EMBL-EBI, SIB	Amino acid	0.00018	06.2022
Non-redundant (nr) [288]	NCBI	Amino acid	0.186	06.2022
Nucleotide (nt) [288]	NCBI	Chromosome + Assembled	0.757	06.2022
RefSeq [243]	NCBI	Chromosome + Assembled Amino acid	$2.97 \\ 0.089$	05.2022
GenBank [70]	NCBI	Chromosome Assembled	$\begin{array}{c} 1.17\\ 15.9\end{array}$	02.2022
Sequence Read Archive [168]	DBJJ	DNA read	$17,\!470$	03.2022
European Nucleotide Archive (ENA) [129]	EMBL-EBI	DNA read	$35,\!000$	02.2022
Sequence read archive (SRA) [160]	NCBI	DNA read Open access DNA read	66,577 32,226	06.2022

Table by Harun Mustafa

Biological sequence archives

Name	Institute(s)	Type	Size (Tc)	Date
Protein Data Bank (PDB) [34]	RCSB	Protein structure	0.000037	06.2022
UniProtKB [76]	EMBL-EBI, SIB	Amino acid	0.00018	06.2022
Non-redundant (nr) $[288]$	NCBI	Amino acid	0.186	06.2022
Nucleotide (nt) [288]	NCBI	Chromosome + Assembled	0.757	06.2022
RefSeq [243]	NCBI	Chromosome + Assembled Amino acid	$2.97 \\ 0.089$	05.2022
GenBank [70]	NCBI	Chromosome Assembled	$\begin{array}{c} 1.17\\ 15.9\end{array}$	02.2022
Sequence Read Archive [168]	DBJJ	DNA read	$17,\!470$	03.2022
European Nucleotide Archive (ENA) $[129]$	EMBL-EBI	DNA read	$35,\!000$	02.2022
Sequence read archive (SRA) [160]	NCBI	DNA read Open access DNA read	66,577 32,226	06.2022

Table by Harun Mustafa

>smp_1 ACGTAC ACGC CGTAC

>smp_2

ACGTAC

ACGAA

ACG

• • •

>smp_m ACGCGAA CGCGA ACGCGA

Optional graph cleaning (pop bubbles, prune tips)

cleaning (pop bubbles, prune tips) **Optional graph**

graph

a joint

Merge into

cleaning (pop bubbles, prune tips) **Optional graph**

Compressed representation

	CAC
	GAA
	TAC
ary	ACA
OD	ACG
Cti	ACT
0	GCA
Jer	GCG
	CGA
×	CGC
	CGT

GTA

graph

a joint

Merge into

	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	0	0	0	1	1	0
	0	0	0	0	0	1
×	1	1	1	1	0	0
aur.	0	0	0	1	1	0
	1	1	1	1	1	1
	0	0	1	0	0	0
auc	0	0	0	1	1	0
OL	0	0	0	0	0	1
	0	0	0	0	0	1
T	0	0	0	1	1	1
	1	1	1	1	0	0
	1	1	1	1	0	0

Optional graph cleaning (pop bubbles, prune tips)

graph

a joint

Merge into

Sequence search

Sequence search

- GCG
- CGA
 - GAT

Sequence search

	Ň	Ö			Ň				
	Π		Π		П				
	()0	ROO	RO)	AND Not		R O O	R()	=	Mask
CAC	1	1	0		0	0	0		1
GAA	0	0	1		0	0	0		1
TAC	1	0	0		1	1	1		0
ACA	1	1	0		0	0	0	Step 1:	1
ACG	1	1	1		1	1	1	construct	0
ACT	0	0	0		0	0	1	mask	0
GCA	1	1	0		0	0	0		1
GCG	0	0	1		0	0	0		1
CGA	0	0	1		0	0	0		1
CGC	1	1	1		0	0	0		1
CGT	1	0	0		1	1	1		0
GTA	1	0	0		1	1	1		0

MetaGraph Online

⟨ Home Seare	ch Align Graphs						BioRxiv
	Me	taGrap	h: Searc	ch DNA Sequ	ences		
TTTC CTGC	АСТСТТТБАТАБСАБСАТБСТТАБТ АСБТААААССАСААААБАТАСАСТА	'ACTAAGCTAAG ACTTAATTACCA	ТСТССААGАТТGТ(GTAGAAATATACA)	CGAGTCAGTCGCTTCATTTCTT ATCAATGCAGTCATAGAATCGG	CTACCTGATACTAGTATGACTTGA AGGACAATACTTTGCCAAGCAGGGT	TCCTCCCG TT	
	Se	elect graph:					
	S	SRA-Fungi			\checkmark		
	Mi	inimum k-m	er matches: 1	00%			
		Search	with alignme	nt ?			
			Search S	SRA-Fungi			
Search resu	ults					Downle	oad as csv
Show 10 🗸 entrie	5				Searc	h:	
		# 🔺	sample 🔶	k-mer matches ? 🔶			
		1	<u>SRR3885701</u>	180			
		2	<u>SRR3885702</u>	180			
		3	<u>SRR3885703</u>	180			
		4	CDD2005706	190			

MetaGraph Online

🔨 Home Search Align (Graphs	BioF
	MetaGranh: Search DNA Seque	nces
TTTCACTCTTTGATAGC CTGCACGTAAAACCACA	AGCATGCTTAGTACTAAGCTAAGTCTCCAAGATTGTCGAGTCAGTC	FACCTGATACTAGTATGACTTGATCCTCCCG GACAATACTTTGCCAAGCAGGGTTT
	Select graph:	
	SKA-Fungi	•
	Minimum k-mer matches: 100%	
	Search with alignment ?	
	Search SRA-Fungi	
Search results		Download as cs
Show 10 🗸 entries		Search:
	# * sample + k-mer matches ? +	
	1 <u>SRR3885701</u> 180	

metagraph.ethz.ch/search

Python Client API

...

...

In	[1]:	from metagr	aph.client import GraphClient	
		SRV = "meta PORT = 1234 g1 = GraphC g2 = GraphC	graph.ethz.ch" 5 lient(SRV, PORT, api_path="/metasu lient(SRV, PORT, api_path="/refsec	ıb") I")
In	[2]:	<pre>query = "GO gl.search(c)</pre>	GCTAACTACGTGCCAGCAGCCGCGGTAATAC" query, align= True)	
Out	[2]:	sample	sequence	score
		0 SRR2201245	GGCTAACTACGTGCCAGCAGCCGCGGTAATAC	64
		1 ERR1732568	GGCTAACTACGTGCCAGCAGCCGCGGTAATAC	64

2 ERR847096 GGCTAACTACGTGCCAGCAGCCGCGGTAATAC

64

...

...

- MetaGraph is an <u>open source</u> modular framework
 - various (succinct) graph representations (Bowe et al., 2012; Conway et al., 2011)
 - different schemes for annotation representation
 - also available as an <u>Anaconda package</u> or <u>Docker container</u>

metagraph.ethz.ch/search

(Almodaresi et al., 2017, Muggli et al., 2017, Karasikov et al., 2019, Danciu et al., 2021, Karasikov et al., 2022, ...)

- MetaGraph is an <u>open source</u> modular framework
 - various (succinct) graph representations (Bowe et al., 2012; Conway et al., 2011)
 - different schemes for annotation representation
 - also available as an <u>Anaconda package</u> or <u>Docker container</u>
- MetaGraph is **highly scalable**
 - scalable construction \Rightarrow works on Petabase size inputs
 - fast query \Rightarrow can query millions of sequences per hour
 - distributed representation \Rightarrow flexible API for client / server setup

(Almodaresi et al., 2017, Muggli et al., 2017, Karasikov et al., 2019, Danciu et al., 2021, Karasikov et al., 2022, ...)

- MetaGraph is an <u>open source</u> modular framework
 - various (succinct) graph representations (Bowe et al., 2012; Conway et al., 2011)
 - different schemes for annotation representation
 - also available as an Anaconda package or Docker container
- MetaGraph is **highly scalable**
 - scalable construction \Rightarrow works on Petabase size inputs
 - fast query \Rightarrow can query millions of sequences per hour
 - distributed representation \Rightarrow flexible API for client / server setup
- Compressed and lossless k-mer set representation
 - up to 8,000x compression on transcriptome data

(Almodaresi et al., 2017, Muggli et al., 2017, Karasikov et al., 2019, Danciu et al., 2021, Karasikov et al., 2022, ...)

- MetaGraph is an <u>open source</u> modular framework
 - various (succinct) graph representations (Bowe et al., 2012; Conway et al., 2011)
 - different schemes for annotation representation
 - also available as an Anaconda package or Docker container
- MetaGraph is **highly scalable**
 - scalable construction \Rightarrow works on Petabase size inputs
 - fast query \Rightarrow can query millions of sequences per hour
 - distributed representation \Rightarrow flexible API for client / server setup
- Compressed and lossless k-mer set representation
 - up to 8,000x compression on transcriptome data
- Sensitive sequence-to-graph alignment
 - efficient sub-k seeding and performant chaining

(Almodaresi et al., 2017, Muggli et al., 2017, Karasikov et al., 2019, Danciu et al., 2021, Karasikov et al., 2022, ...)

- MetaGraph is an <u>open source</u> modular framework
 - various (succinct) graph representations (Bowe et al., 2012; Conway et al., 2011)
 - different schemes for annotation representation
 - also available as an Anaconda package or Docker container
- MetaGraph is **highly scalable**
 - scalable construction \Rightarrow works on Petabase size inputs
 - fast query \Rightarrow can query millions of sequences per hour
 - distributed representation \Rightarrow flexible API for client / server setup
- Compressed and **lossless k-mer set representation**
 - up to 8,000x compression on transcriptome data
- Sensitive sequence-to-graph alignment
 - efficient sub-k seeding and performant chaining
- Support for integrative analysis
 - novel concept of differential assembly

(Almodaresi et al., 2017, Muggli et al., 2017, Karasikov et al., 2019, Danciu et al., 2021, Karasikov et al., 2022, ...)

- MetaGraph is an open source modular framework
 - various (succinct) graph representations (Bowe et al., 2012; Conway et al., 2011)
 - different schemes for annotation representation
 - also available as an Anaconda package or Docker container
- MetaGraph is **highly scalable**
 - scalable construction \Rightarrow works on Petabase size inputs
 - fast query \Rightarrow can query millions of sequences per hour
 - distributed representation \Rightarrow flexible API for client / server setup
- Compressed and **lossless k-mer set representation**
 - up to 8,000x compression on transcriptome data
- Sensitive sequence-to-graph alignment
 - efficient sub-k seeding and performant chaining
- Support for integrative analysis
 - novel concept of differential assembly

(Almodaresi et al., 2017, Muggli et al., 2017, Karasikov et al., 2019, Danciu et al., 2021, Karasikov et al., 2022, ...)

Now also

- Indexing quantitative data
 - k-mer abundances
 - **k-mer coordinates** (positions in genomes)
 - fully lossless representation

MetaGraph

- MetaGraph is an open source modular framework
 - various (succinct) graph representations (Bowe et al., 2012; Conway et al., 2011)
 - different schemes for annotation representation
 - also available as an Anaconda package or Docker container
- MetaGraph is **highly scalable**
 - scalable construction \Rightarrow works on Petabase size inputs
 - fast query \Rightarrow can query millions of sequences per hour
 - distributed representation \Rightarrow flexible API for client / server setup
- Compressed and **lossless k-mer set representation**
 - up to 8,000x compression on transcriptome data
- Sensitive sequence-to-graph alignment
 - efficient sub-k seeding and performant chaining
- Support for integrative analysis
 - novel concept of differential assembly

(Almodaresi et al., 2017, Muggli et al., 2017, Karasikov et al., 2019, Danciu et al., 2021, Karasikov et al., 2022, ...)

Now also

- Indexing quantitative data
 - k-mer abundances
 - **k-mer coordinates** (positions in genomes)
 - fully lossless representation

Soon: memory mapping (by Marek Kokot)

host terabyte-size indexes with less RAM

Scalability of MetaGraph

11

Scalability of MetaGraph

								11
 	 . 1	11	. 1	-	11	 -	g_ 1	

Scalability of MetaGraph

Achieved by:

Use of succinct data structures and efficient representation schemes

algorithmic choices that work efficiently with succinct data structures (e.g., batch operations)

Querying DRR067889

	1		1			
_	 					
						 -
		and the second se				_

		1	1

Dataset	\mathbf{Tbp}	Input (gz)	k	# k-mers	# labels	\mathbf{Graph}	Annot.	Index	Ratio
UHGG (catalog)	0.01	$3.3~\mathrm{GB}$	31	$9.7\cdot 10^9$	$4,\!644$	$2.6~\mathrm{GB}$	$0.6~\mathrm{GB}$	$3.2~\mathrm{GB}$	$1.0 \times$
UHGG (all)	0.71	$206.0~\mathrm{GB}$	31	$33.0\cdot 10^9$	$286,\!997$	$9.6~\mathrm{GB}$	$17.7~\mathrm{GB}$	$27.3~\mathrm{GB}$	7.6 imes
Tara Oceans (genomes)	0.06	$17.9~\mathrm{GB}$	31	$26.5\cdot 10^9$	$6,\!414,\!647$	$7.3~\mathrm{GB}$	$3.8~\mathrm{GB}$	11.1 GB	1.6 imes
Tara Oceans (assemblies)	0.36	$106.8~\mathrm{GB}$	31	$119.4\cdot 10^9$	$318,\!205,\!057$	$34.4~\mathrm{GB}$	89.7 GB	$124.1~\mathrm{GB}$	0.9 imes
RefSeq (85k taxID)	1.70	$502.4~\mathrm{GB}$	31	$626.2\cdot 10^9$	$85,\!375$	$176.0~\mathrm{GB}$	$87.5~\mathrm{GB}$	$263.6~\mathrm{GB}$	1.9 imes
RefSeq $(33M \text{ accessions})$	1.70	$502.5~\mathrm{GB}$	31	$626.2\cdot 10^9$	$32,\!881,\!348$	$176.0~\mathrm{GB}$	$287.0~\mathrm{GB}$	$463.1~\mathrm{GB}$	$1.1 \times$
Kingsford	8.0	$2.9~\mathrm{TB}$	21	$3.9\cdot 10^9$	$2,\!652$	$1.8~\mathrm{GB}$	4.8 GB	$6.6~\mathrm{GB}$	$437 \times$
GTEx	70.0	$40.0 \ \mathrm{TB}$	41	$1.1\cdot 10^9$	9,759	$0.4~\mathrm{GB}$	8.0 GB	$8.4~\mathrm{GB}$	$4,742 \times$
TCGA	81.2	$65.0~\mathrm{TB}$	31	$1.1\cdot 10^9$	$11,\!095$	$0.4~\mathrm{GB}$	$10.7~\mathrm{GB}$	11.1 GB	$5,\!831 imes$
MetaSUB	7.2	$5.5~\mathrm{TB}$	19	$35.2\cdot 10^9$	4,220	$20.5~\mathrm{GB}$	$185.9~\mathrm{GB}$	$206.4~\mathrm{GB}$	27 imes
SRA-MetaGut	155.8	$86.0 \ \mathrm{TB}$	31	$296.9\cdot 10^9$	$242,\!619$	$112.2~\mathrm{GB}$	$999.0~\mathrm{GB}$	$1,111.3~\mathrm{GB}$	$77 \times$
SRA-Microbe	221.1	$170.0 \ \mathrm{TB}$	31	$39.5\cdot 10^9$	$446,\!506$	$15.4~\mathrm{GB}$	$50.1~\mathrm{GB}$	$65.5~\mathrm{GB}$	$2,\!595 imes$
SRA-Fungi	160.2	$80.0 \ \mathrm{TB}$	31	$129.7\cdot 10^9$	$121,\!900$	$43.5~\mathrm{GB}$	$64.7~\mathrm{GB}$	$108.1~\mathrm{GB}$	740 imes
SRA-Plants	$1,\!109.2$	$575.9~\mathrm{TB}$	31	$923.4\cdot 10^9$	531,736	$333.8~\mathrm{GB}$	$1,510.3~\mathrm{GB}$	$1,844.1 { m GB}$	$312 \times$
SRA-Human	725.4	$345.7~\mathrm{TB}$	31	$343.9\cdot 10^9$	$436,\!502$	$127.6~\mathrm{GB}$	$3,\!274.5~\mathrm{GB}$	$3,402.1~\mathrm{GB}$	$102 \times$
SRA-Metazoa (Mouse)	146.6	$61.3~\mathrm{TB}$	31	$50.2\cdot 10^9$	$57,\!938$	$21.1~\mathrm{GB}$	$270.5~\mathrm{GB}$	$291.6~\mathrm{GB}$	210 imes
SRA-Metazoa (10k)	33.4	$16.5 \ { m TB}$	31	$293.3\cdot 10^9$	10,000	$94.0~\mathrm{GB}$	$98.7~\mathrm{GB}$	$192.7~\mathrm{GB}$	$86 \times$
SRA-Metazoa \ast	$1,\!856.8$	$925.3~\mathrm{TB}$	31	$2749.8\cdot 10^9$	$797,\!883$	$960.4~\mathrm{GB}$	$7,\!898.4~\mathrm{GB}$	$8,858.8~\mathrm{GB}$	$104 \times$

Dataset	Tbp	Input (gz)	\mathbf{k}	# k-mers	# labels	Graph	Annot.	Index	Ratio
UHGG (catalog)	0.01	3.3 GB	31	$9.7\cdot 10^9$	$4,\!644$	2.6 GB	0.6 GB	$3.2~\mathrm{GB}$	$1.0 \times$
UHGG (all)	0.71	206.0 GB	31	$33.0\cdot 10^9$	286,997	9.6 GB	17.7 GB	27.3 GB	$7.6 \times$
Tara Oceans (genomes)	Can	we index k-r	mer	nositions as	well $2^{4,647}$	7.3 GB	3.8 GB	11.1 GB	$1.6 \times$
Tara Oceans (assemblies)	0.30	100.8 GB	31	119.4 · 10°	318,205,057	34.4 GB	89.7 GB	124.1 GB	$0.9 \times$
RefSeq (85k taxID)	1.70	$502.4~\mathrm{GB}$	31	$626.2\cdot 10^9$	85,375	176.0 GB	87.5 GB	263.6 GB	$1.9 \times$
RefSeq $(33M \text{ accessions})$	1.70	$502.5~\mathrm{GB}$	31	$626.2\cdot 10^9$	$32,\!881,\!348$	176.0 GB	287.0 GB	463.1 GB	$1.1 \times$
Kingsford	8.0	2.9 TB	21	$3.9\cdot 10^9$	$2,\!652$	1.8 GB	4.8 GB	6.6 GB	$437 \times$
GTEx	70.0	40.0 TB	41	$1.1\cdot 10^9$	9,759	0.4 GB	8.0 GB	8.4 GB	$4,742 \times$
TCGA	81.2	$65.0 \ \mathrm{TB}$	31	$1.1\cdot 10^9$	11,095	0.4 GB	10.7 GB	11.1 GB	$5,\!831 imes$
MetaSUB	7.2	$5.5~\mathrm{TB}$	19	$35.2\cdot 10^9$	4,220	$20.5~\mathrm{GB}$	185.9 GB	206.4 GB	$27 \times$
SRA-MetaGut	155.8	86.0 TB	31	$296.9\cdot 10^9$	$242,\!619$	112.2 GB	999.0 GB	1,111.3 GB	$77 \times$
SRA-Microbe	221.1	170.0 TB	31	$39.5\cdot 10^9$	446,506	15.4 GB	$50.1~\mathrm{GB}$	$65.5~\mathrm{GB}$	$2,595 \times$
SRA-Fungi	160.2	80.0 TB	31	$129.7\cdot 10^9$	$121,\!900$	$43.5~\mathrm{GB}$	$64.7~\mathrm{GB}$	108.1 GB	$740 \times$
SRA-Plants	$1,\!109.2$	$575.9 \ \mathrm{TB}$	31	$923.4\cdot 10^9$	531,736	333.8 GB	1,510.3 GB	1,844.1 GB	$312 \times$
SRA-Human	725.4	$345.7 \ \mathrm{TB}$	31	$343.9\cdot 10^9$	436,502	127.6 GB	$3,\!274.5~\mathrm{GB}$	$3,402.1~\mathrm{GB}$	$102 \times$
SRA-Metazoa (Mouse)	146.6	61.3 TB	31	$50.2\cdot 10^9$	$57,\!938$	21.1 GB	270.5 GB	291.6 GB	$210 \times$
SRA-Metazoa $(10k)$	33.4	16.5 TB	31	$293.3\cdot 10^9$	10,000	94.0 GB	98.7 GB	192.7 GB	$86 \times$
SRA-Metazoa $*$	$1,\!856.8$	$925.3 \mathrm{TB}$	31	$2749.8\cdot 10^9$	797,883	960.4 GB	$7,\!898.4~\mathrm{GB}$	8,858.8 GB	$104 \times$

Dataset	\mathbf{Tbp}	Input (gz)	\mathbf{k}	# k-mers	# labels	Graph	Annot.	Index	Ratio
UHGG (catalog)	0.01	3.3 GB	31	$9.7\cdot 10^9$	$4,\!644$	2.6 GB	0.6 GB	$3.2~\mathrm{GB}$	$1.0 \times$
UHGG (all)	0.71	206.0 GB	31	$33.0\cdot 10^9$	286,997	9.6 GB	17.7 GB	27.3 GB	$7.6 \times$
Tara Oceans (genomes)	Can	we index k-r	ner	nositions as	well $2^{4,647}$	7.3 GB	3.8 GB	11.1 GB	$1.6 \times$
Tara Oceans (assemblies)	0.30	100.8 GB	31	119.4 • 10°	318,205,057	34.4 GB	89.7 GB	124.1 GB	$0.9 \times$
RefSeq $(85k \text{ taxID})$	1.70	$502.4~\mathrm{GB}$	31	$626.2\cdot 10^9$	85,375	176.0 GB	87.5 GB	263.6 GB	$1.9 \times$
RefSeq $(33M \text{ accessions})$	1.70	$502.5~\mathrm{GB}$	31	$626.2\cdot 10^9$	$32,\!881,\!348$	176.0 GB	287.0 GB	463.1 GB	$1.1 \times$
Kingsford	8.0	2.9 TB	21	$3.9\cdot 10^9$	$2,\!652$	1.8 GB	4.8 GB	6.6 GB	$437 \times$
GTEx What	t about	expression?	41	$1.1 \cdot 10^9$	9,759	0.4 GB	8.0 GB	$8.4~\mathrm{GB}$	$4,742\times$
TCGA	81.2	$65.0 \ \mathrm{TB}$	31	$1.1 \cdot 10^9$	11,095	0.4 GB	10.7 GB	11.1 GB	$5,\!831 imes$
MetaSUB	7.2	$5.5~\mathrm{TB}$	19	$35.2\cdot 10^9$	4,220	$20.5~\mathrm{GB}$	185.9 GB	206.4 GB	$27 \times$
SRA-MetaGut	155.8	86.0 TB	31	$296.9\cdot 10^9$	$242,\!619$	112.2 GB	999.0 GB	1,111.3 GB	$77 \times$
SRA-Microbe	221.1	170.0 TB	31	$39.5\cdot 10^9$	446,506	15.4 GB	$50.1~\mathrm{GB}$	$65.5~\mathrm{GB}$	$2,595 \times$
SRA-Fungi	160.2	80.0 TB	31	$129.7\cdot 10^9$	$121,\!900$	43.5 GB	$64.7~\mathrm{GB}$	108.1 GB	$740 \times$
SRA-Plants	$1,\!109.2$	575.9 TB	31	$923.4\cdot 10^9$	531,736	333.8 GB	$1,510.3~\mathrm{GB}$	$1,844.1 { m GB}$	$312 \times$
SRA-Human	725.4	$345.7 \mathrm{TB}$	31	$343.9\cdot 10^9$	436,502	127.6 GB	$3,\!274.5~\mathrm{GB}$	$3,402.1 { m GB}$	$102 \times$
SRA-Metazoa (Mouse)	146.6	61.3 TB	31	$50.2\cdot 10^9$	$57,\!938$	21.1 GB	270.5 GB	291.6 GB	$210 \times$
SRA-Metazoa $(10k)$	33.4	16.5 TB	31	$293.3\cdot 10^9$	10,000	94.0 GB	98.7 GB	$192.7~\mathrm{GB}$	$86 \times$
SRA-Metazoa \ast	1,856.8	925.3 TB	31	$2749.8\cdot10^9$	797,883	960.4 GB	$7,\!898.4~\mathrm{GB}$	8,858.8 GB	$104 \times$

Background

De Bruijn Graphs

... widely used in Bioinformatics since 1989

14

... widely used in Bioinformatics since 1989

14

... widely used in Bioinformatics since 1989

... widely used in Bioinformatics since 1989

... widely used in Bioinformatics since 1989

... widely used in Bioinformatics since 1989

... widely used in Bioinformatics since 1989

... widely used in Bioinformatics since 1989

- Originally employed for *de novo* assembly
- Now, also widely used for indexing raw sequencing data

L3: TTAA

k-mer dictionary (de Bruijn Graph)

(de Bruijn Graph)

(node labeling)

1. Representing k-mer abundances

(de Bruijn Graph)

(node labeling)

2. Representing k-mer coordinates

2. Representing k-mer coordinates

2. Representing k-mer coordinates

de Bruijn graph

2. Representing k-mer coordinates

Not invertible representation 😕

de Bruijn graph

2. Representing k-mer coordinates

Not invertible representation 😕

de Bruijn graph

2. Representing k-mer coordinates

Invertible 🙂

2. Representing k-mer coordinates

Encoding *sequence traces* allows

- reconstructing indexed sequences (hence, lossless sequence representation)

2. Representing k-mer coordinates

Encoding *sequence traces* allows

- reconstructing indexed sequences (hence, lossless sequence representation)
- performing exact sequence alignment

2. Representing k-mer coordinates

Encoding *sequence traces* allows

- reconstructing indexed sequences (hence, lossless sequence representation)
- performing exact sequence alignment
- retrieving all traces crossing a node

Trace Consistent Graph (TCG-) Aligner

Sequence alignment on top of Counting DBG with k-mer coordinates with the seed-chain-extend approach:

- Find seeds of size k or less
- Chaining (inspired by Minimap2 [Li, 2018]) 2.
 - DP table for pairs (seed, coordinate) sorted by coordinates
 - Dynamic Programming + Backtracking
- Extension algorithm 3.
 - generalization of Needleman-Wunsch algorithm
 - similar to the MetaGraph aligner [Karasikov, Mustafa et al., 2020]

18

Alignment accuracy

Evaluation approach

- Index a reference genome
- 2. Simulate reads from the same reference
- Align reads and measure the 3. distance between the alignments and their generating references

Minimap2

subplot, the curves of vg- and TCG-Aligner are superimposed.

Alignment accuracy for Counting DBG and state-of-the-art aligners on simulated Illumina- and PacBio-type reads (E. coli NC 000913.3 and human chr22). The edit distance is measured between the alignment (the returned path in the graph) and the ground truth sequence. In the top left

Lossless indexing of RefSeq RefSeq (33M accessions, 1.7 Tbp, 483 GB)

	BLAST	MegaBLAST	This work
Index size	437 GB (2.05 bits/bp)	2,358 GB (11.07 bits/bp)	509 GB (2.39 bits/bp)
Align 1 read $(*)$	353 sec, 417 GB	12.5 sec, 0.090 GB	0.66 sec , 500 GB
Align 1,000 reads	1,857 sec, 428 GB	$1,542 \text{ sec}, \mathbf{22.0 \ GB}$	575 sec , 513 GB

The alignment speed was measured on reads taken from a metagenomic sequencing sample SRR10002688_1. (*) For aligning single reads, the experiment is independently performed for the 100 first reads and the average time and RAM usage are presented.

Lossless indexing of RefSeq RefSeq (33M accessions, 1.7 Tbp, 483 GB)

		BLAST	MegaBLAST	This work
Index size	437 G	B (2.05 bits/bp))2,358 GB (11.07 bits/bp)	509 GB (2.39 bits/bp)
Align 1 read $(*)$		353 sec, 417 GE	B 12.5 sec, 0.090 GB	0.66 sec , 500 GB
Align 1,000 reads		1,857 sec, 428 GE	1,542 sec, 22.0 GB	575 sec , 513 GB

The alignment speed was measured on reads taken from a metagenomic sequencing sample SRR10002688_1. (*) For aligning single reads, the experiment is independently performed for the 100 first reads and the average time and RAM usage are presented.

Sequence alignment in MetaGraph

Slide by Harun Mustafa

Mixed label alignment in MetaGraph

Task: Given a query sequence, find a graph walk that best matches the query

2. Search graph to extend seeds to alignments

3. Chain to form a Multi-label alignment

"If you only need fast exact *k*-mer matching, stop here" Each alignment step can use one of many **different modules** depending on the use case

Slide by Harun Mustafa

MetaGraph is a tool for indexing, search and assembly of sequences

23

MetaGraph is a tool for indexing, search and assembly of sequences

- k-mer presence/absence
- k-mer abundances
- k-mer positions

23

MetaGraph is a tool for indexing, search and assembly of sequences

Allows efficiently representing

- k-mer presence/absence
- k-mer abundances
- k-mer positions

Extremely scalable

- efficient construction algorithms with limited memory

23

MetaGraph is a tool for indexing, search and assembly of sequences

- k-mer presence/absence
- k-mer abundances
- k-mer positions
- Extremely scalable
 - efficient construction algorithms with limited memory
- Supports inexact search with alignment - supports sub-k seeding

23

MetaGraph is a tool for indexing, search and assembly of sequences

- k-mer presence/absence
- k-mer abundances
- k-mer positions
- Extremely scalable
 - efficient construction algorithms with limited memory
- Supports inexact search with alignment
 - supports sub-k seeding
 - different constraints (sequences / labels / mixed-labels / none)

23

MetaGraph is a tool for indexing, search and assembly of sequences

- k-mer presence/absence
- k-mer abundances
- k-mer positions
- Extremely scalable
 - efficient construction algorithms with limited memory
- Supports inexact search with alignment
 - supports sub-k seeding
 - different constraints (sequences / labels / mixed-labels / none)
- A number of pre-constructed indexes are available at <u>https://metagraph.ethz.ch</u>

23

Team

Mikhail Karasikov Marc Zimmermann

Andre Kahles

Harun Mustafa

Daniel Danciu

Gunnar Rätsch

NRP75 Team

Mario Stanke

Further contributors

- Thomas Zhou
- Marek Kokot •
- Chris Barber •
- Radu Muntean ٠
- Jan Studený •
- Sara Javadzadeh-No •
- Predrag Krnetic •

Matthis Ebel

•

Swiss National Science Foundation

